Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times 4\left(x-2\right)=3\left(3x-3\right)+3x\left(-9\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
4x^{2}-2x\times 4=3\left(3x-3\right)+3x\left(-9\right)
Use the distributive property to multiply x\times 4 by x-2.
4x^{2}-8x=3\left(3x-3\right)+3x\left(-9\right)
Multiply -2 and 4 to get -8.
4x^{2}-8x=9x-9+3x\left(-9\right)
Use the distributive property to multiply 3 by 3x-3.
4x^{2}-8x=9x-9-27x
Multiply 3 and -9 to get -27.
4x^{2}-8x=-18x-9
Combine 9x and -27x to get -18x.
4x^{2}-8x+18x=-9
Add 18x to both sides.
4x^{2}+10x=-9
Combine -8x and 18x to get 10x.
4x^{2}+10x+9=0
Add 9 to both sides.
x=\frac{-10±\sqrt{10^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 10 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4\times 9}}{2\times 4}
Square 10.
x=\frac{-10±\sqrt{100-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-10±\sqrt{100-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-10±\sqrt{-44}}{2\times 4}
Add 100 to -144.
x=\frac{-10±2\sqrt{11}i}{2\times 4}
Take the square root of -44.
x=\frac{-10±2\sqrt{11}i}{8}
Multiply 2 times 4.
x=\frac{-10+2\sqrt{11}i}{8}
Now solve the equation x=\frac{-10±2\sqrt{11}i}{8} when ± is plus. Add -10 to 2i\sqrt{11}.
x=\frac{-5+\sqrt{11}i}{4}
Divide -10+2i\sqrt{11} by 8.
x=\frac{-2\sqrt{11}i-10}{8}
Now solve the equation x=\frac{-10±2\sqrt{11}i}{8} when ± is minus. Subtract 2i\sqrt{11} from -10.
x=\frac{-\sqrt{11}i-5}{4}
Divide -10-2i\sqrt{11} by 8.
x=\frac{-5+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i-5}{4}
The equation is now solved.
x\times 4\left(x-2\right)=3\left(3x-3\right)+3x\left(-9\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3,x.
4x^{2}-2x\times 4=3\left(3x-3\right)+3x\left(-9\right)
Use the distributive property to multiply x\times 4 by x-2.
4x^{2}-8x=3\left(3x-3\right)+3x\left(-9\right)
Multiply -2 and 4 to get -8.
4x^{2}-8x=9x-9+3x\left(-9\right)
Use the distributive property to multiply 3 by 3x-3.
4x^{2}-8x=9x-9-27x
Multiply 3 and -9 to get -27.
4x^{2}-8x=-18x-9
Combine 9x and -27x to get -18x.
4x^{2}-8x+18x=-9
Add 18x to both sides.
4x^{2}+10x=-9
Combine -8x and 18x to get 10x.
\frac{4x^{2}+10x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\frac{10}{4}x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{2}x=-\frac{9}{4}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{9}{4}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{9}{4}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{11}{16}
Add -\frac{9}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=-\frac{11}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{11}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{11}i}{4} x+\frac{5}{4}=-\frac{\sqrt{11}i}{4}
Simplify.
x=\frac{-5+\sqrt{11}i}{4} x=\frac{-\sqrt{11}i-5}{4}
Subtract \frac{5}{4} from both sides of the equation.