Solve for x
x = \frac{295}{68} = 4\frac{23}{68} \approx 4.338235294
Graph
Share
Copied to clipboard
40\times 4\left(x-2\right)+15\left(3+1\right)=24\times 3\left(6x-5\right)-1080
Multiply both sides of the equation by 120, the least common multiple of 3,8,5.
160\left(x-2\right)+15\left(3+1\right)=24\times 3\left(6x-5\right)-1080
Multiply 40 and 4 to get 160.
160x-320+15\left(3+1\right)=24\times 3\left(6x-5\right)-1080
Use the distributive property to multiply 160 by x-2.
160x-320+15\times 4=24\times 3\left(6x-5\right)-1080
Add 3 and 1 to get 4.
160x-320+60=24\times 3\left(6x-5\right)-1080
Multiply 15 and 4 to get 60.
160x-260=24\times 3\left(6x-5\right)-1080
Add -320 and 60 to get -260.
160x-260=72\left(6x-5\right)-1080
Multiply 24 and 3 to get 72.
160x-260=432x-360-1080
Use the distributive property to multiply 72 by 6x-5.
160x-260=432x-1440
Subtract 1080 from -360 to get -1440.
160x-260-432x=-1440
Subtract 432x from both sides.
-272x-260=-1440
Combine 160x and -432x to get -272x.
-272x=-1440+260
Add 260 to both sides.
-272x=-1180
Add -1440 and 260 to get -1180.
x=\frac{-1180}{-272}
Divide both sides by -272.
x=\frac{295}{68}
Reduce the fraction \frac{-1180}{-272} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}