Solve for x
x\geq 7
Graph
Share
Copied to clipboard
7\times 4\left(x+2\right)-3\times 6\left(x-7\right)\geq 252
Multiply both sides of the equation by 21, the least common multiple of 3,7. Since 21 is positive, the inequality direction remains the same.
28\left(x+2\right)-3\times 6\left(x-7\right)\geq 252
Multiply 7 and 4 to get 28.
28x+56-3\times 6\left(x-7\right)\geq 252
Use the distributive property to multiply 28 by x+2.
28x+56-18\left(x-7\right)\geq 252
Multiply -3 and 6 to get -18.
28x+56-18x+126\geq 252
Use the distributive property to multiply -18 by x-7.
10x+56+126\geq 252
Combine 28x and -18x to get 10x.
10x+182\geq 252
Add 56 and 126 to get 182.
10x\geq 252-182
Subtract 182 from both sides.
10x\geq 70
Subtract 182 from 252 to get 70.
x\geq \frac{70}{10}
Divide both sides by 10. Since 10 is positive, the inequality direction remains the same.
x\geq 7
Divide 70 by 10 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}