Solve for x
x = \frac{23}{20} = 1\frac{3}{20} = 1.15
Graph
Share
Copied to clipboard
2\times 4\left(3x-7\right)-5\left(7x-3\right)+x=30\left(4-5x\right)
Multiply both sides of the equation by 10, the least common multiple of 5,2,10.
8\left(3x-7\right)-5\left(7x-3\right)+x=30\left(4-5x\right)
Multiply 2 and 4 to get 8.
24x-56-5\left(7x-3\right)+x=30\left(4-5x\right)
Use the distributive property to multiply 8 by 3x-7.
24x-56-35x+15+x=30\left(4-5x\right)
Use the distributive property to multiply -5 by 7x-3.
-11x-56+15+x=30\left(4-5x\right)
Combine 24x and -35x to get -11x.
-11x-41+x=30\left(4-5x\right)
Add -56 and 15 to get -41.
-10x-41=30\left(4-5x\right)
Combine -11x and x to get -10x.
-10x-41=120-150x
Use the distributive property to multiply 30 by 4-5x.
-10x-41+150x=120
Add 150x to both sides.
140x-41=120
Combine -10x and 150x to get 140x.
140x=120+41
Add 41 to both sides.
140x=161
Add 120 and 41 to get 161.
x=\frac{161}{140}
Divide both sides by 140.
x=\frac{23}{20}
Reduce the fraction \frac{161}{140} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}