Solve for x
x = -\frac{67}{61} = -1\frac{6}{61} \approx -1.098360656
Graph
Share
Copied to clipboard
3\times 4\left(3x+6\right)+45=5\times 2\left(2x+5\right)-45x
Multiply both sides of the equation by 15, the least common multiple of 5,3.
12\left(3x+6\right)+45=5\times 2\left(2x+5\right)-45x
Multiply 3 and 4 to get 12.
36x+72+45=5\times 2\left(2x+5\right)-45x
Use the distributive property to multiply 12 by 3x+6.
36x+117=5\times 2\left(2x+5\right)-45x
Add 72 and 45 to get 117.
36x+117=10\left(2x+5\right)-45x
Multiply 5 and 2 to get 10.
36x+117=20x+50-45x
Use the distributive property to multiply 10 by 2x+5.
36x+117=-25x+50
Combine 20x and -45x to get -25x.
36x+117+25x=50
Add 25x to both sides.
61x+117=50
Combine 36x and 25x to get 61x.
61x=50-117
Subtract 117 from both sides.
61x=-67
Subtract 117 from 50 to get -67.
x=\frac{-67}{61}
Divide both sides by 61.
x=-\frac{67}{61}
Fraction \frac{-67}{61} can be rewritten as -\frac{67}{61} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}