Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}
Rationalize the denominator of \frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{3+2\sqrt{2}} by multiplying numerator and denominator by 3-2\sqrt{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{3^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-\left(2\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-4\times 2}
The square of \sqrt{2} is 2.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{9-8}
Multiply 4 and 2 to get 8.
\frac{4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)}{1}
Subtract 8 from 9 to get 1.
4\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)
Anything divided by one gives itself.
\left(4+4\sqrt{2}\right)\left(1-\sqrt{2}\right)\left(3-2\sqrt{2}\right)
Use the distributive property to multiply 4 by 1+\sqrt{2}.
\left(4-4\sqrt{2}+4\sqrt{2}-4\left(\sqrt{2}\right)^{2}\right)\left(3-2\sqrt{2}\right)
Apply the distributive property by multiplying each term of 4+4\sqrt{2} by each term of 1-\sqrt{2}.
\left(4-4\left(\sqrt{2}\right)^{2}\right)\left(3-2\sqrt{2}\right)
Combine -4\sqrt{2} and 4\sqrt{2} to get 0.
\left(4-4\times 2\right)\left(3-2\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(4-8\right)\left(3-2\sqrt{2}\right)
Multiply -4 and 2 to get -8.
-4\left(3-2\sqrt{2}\right)
Subtract 8 from 4 to get -4.
-12+8\sqrt{2}
Use the distributive property to multiply -4 by 3-2\sqrt{2}.