Solve for x
x = \frac{1288}{255} = 5\frac{13}{255} \approx 5.050980392
Graph
Share
Copied to clipboard
4\left(-46\right)+x\times 20=x\times \frac{-47}{\frac{7}{2}}+x\left(-3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
-184+x\times 20=x\times \frac{-47}{\frac{7}{2}}+x\left(-3\right)
Multiply 4 and -46 to get -184.
-184+x\times 20=x\left(-47\right)\times \frac{2}{7}+x\left(-3\right)
Divide -47 by \frac{7}{2} by multiplying -47 by the reciprocal of \frac{7}{2}.
-184+x\times 20=x\times \frac{-47\times 2}{7}+x\left(-3\right)
Express -47\times \frac{2}{7} as a single fraction.
-184+x\times 20=x\times \frac{-94}{7}+x\left(-3\right)
Multiply -47 and 2 to get -94.
-184+x\times 20=x\left(-\frac{94}{7}\right)+x\left(-3\right)
Fraction \frac{-94}{7} can be rewritten as -\frac{94}{7} by extracting the negative sign.
-184+x\times 20=-\frac{115}{7}x
Combine x\left(-\frac{94}{7}\right) and x\left(-3\right) to get -\frac{115}{7}x.
-184+x\times 20+\frac{115}{7}x=0
Add \frac{115}{7}x to both sides.
-184+\frac{255}{7}x=0
Combine x\times 20 and \frac{115}{7}x to get \frac{255}{7}x.
\frac{255}{7}x=184
Add 184 to both sides. Anything plus zero gives itself.
x=184\times \frac{7}{255}
Multiply both sides by \frac{7}{255}, the reciprocal of \frac{255}{7}.
x=\frac{184\times 7}{255}
Express 184\times \frac{7}{255} as a single fraction.
x=\frac{1288}{255}
Multiply 184 and 7 to get 1288.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}