Solve for y
y=3
Graph
Share
Copied to clipboard
\left(y+2\right)\times 4-\left(6y-4\right)=\left(y-2\right)\times 6
Variable y cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(y-2\right)\left(y+2\right), the least common multiple of y-2,y^{2}-4,y+2.
4y+8-\left(6y-4\right)=\left(y-2\right)\times 6
Use the distributive property to multiply y+2 by 4.
4y+8-6y+4=\left(y-2\right)\times 6
To find the opposite of 6y-4, find the opposite of each term.
-2y+8+4=\left(y-2\right)\times 6
Combine 4y and -6y to get -2y.
-2y+12=\left(y-2\right)\times 6
Add 8 and 4 to get 12.
-2y+12=6y-12
Use the distributive property to multiply y-2 by 6.
-2y+12-6y=-12
Subtract 6y from both sides.
-8y+12=-12
Combine -2y and -6y to get -8y.
-8y=-12-12
Subtract 12 from both sides.
-8y=-24
Subtract 12 from -12 to get -24.
y=\frac{-24}{-8}
Divide both sides by -8.
y=3
Divide -24 by -8 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}