Solve for x
x = -\frac{39}{10} = -3\frac{9}{10} = -3.9
Graph
Share
Copied to clipboard
\left(4x+9\right)\times 4-\left(x-6\right)\times 6+\left(4x+9\right)\times 5=0
Variable x cannot be equal to any of the values -\frac{9}{4},6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(4x+9\right), the least common multiple of x-6,4x+9.
16x+36-\left(x-6\right)\times 6+\left(4x+9\right)\times 5=0
Use the distributive property to multiply 4x+9 by 4.
16x+36-\left(6x-36\right)+\left(4x+9\right)\times 5=0
Use the distributive property to multiply x-6 by 6.
16x+36-6x+36+\left(4x+9\right)\times 5=0
To find the opposite of 6x-36, find the opposite of each term.
10x+36+36+\left(4x+9\right)\times 5=0
Combine 16x and -6x to get 10x.
10x+72+\left(4x+9\right)\times 5=0
Add 36 and 36 to get 72.
10x+72+20x+45=0
Use the distributive property to multiply 4x+9 by 5.
30x+72+45=0
Combine 10x and 20x to get 30x.
30x+117=0
Add 72 and 45 to get 117.
30x=-117
Subtract 117 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-117}{30}
Divide both sides by 30.
x=-\frac{39}{10}
Reduce the fraction \frac{-117}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}