Solve for Q
Q=-\frac{16}{4-x}
x\neq 4
Solve for x
x=4+\frac{16}{Q}
Q\neq 0
Graph
Share
Copied to clipboard
2\times 4+2\times 4=\frac{1}{2}Q\times 2\left(x-4\right)
Multiply both sides of the equation by 2\left(x-4\right), the least common multiple of x-4,4-x,2.
8+8=\frac{1}{2}Q\times 2\left(x-4\right)
Do the multiplications.
16=\frac{1}{2}Q\times 2\left(x-4\right)
Add 8 and 8 to get 16.
16=Q\left(x-4\right)
Multiply \frac{1}{2} and 2 to get 1.
16=Qx-4Q
Use the distributive property to multiply Q by x-4.
Qx-4Q=16
Swap sides so that all variable terms are on the left hand side.
\left(x-4\right)Q=16
Combine all terms containing Q.
\frac{\left(x-4\right)Q}{x-4}=\frac{16}{x-4}
Divide both sides by x-4.
Q=\frac{16}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
2\times 4+2\times 4=\frac{1}{2}Q\times 2\left(x-4\right)
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-4\right), the least common multiple of x-4,4-x,2.
8+8=\frac{1}{2}Q\times 2\left(x-4\right)
Do the multiplications.
16=\frac{1}{2}Q\times 2\left(x-4\right)
Add 8 and 8 to get 16.
16=Q\left(x-4\right)
Multiply \frac{1}{2} and 2 to get 1.
16=Qx-4Q
Use the distributive property to multiply Q by x-4.
Qx-4Q=16
Swap sides so that all variable terms are on the left hand side.
Qx=16+4Q
Add 4Q to both sides.
Qx=4Q+16
The equation is in standard form.
\frac{Qx}{Q}=\frac{4Q+16}{Q}
Divide both sides by Q.
x=\frac{4Q+16}{Q}
Dividing by Q undoes the multiplication by Q.
x=4+\frac{16}{Q}
Divide 16+4Q by Q.
x=4+\frac{16}{Q}\text{, }x\neq 4
Variable x cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}