Solve for x
x = \frac{17}{5} = 3\frac{2}{5} = 3.4
Graph
Share
Copied to clipboard
\left(x-4\right)\left(x-1\right)\times 4-\left(x-4\right)\left(x-3\right)\times 3=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Variable x cannot be equal to any of the values 1,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-1\right), the least common multiple of x-3,x-1,x-4.
\left(x^{2}-5x+4\right)\times 4-\left(x-4\right)\left(x-3\right)\times 3=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x-4 by x-1 and combine like terms.
4x^{2}-20x+16-\left(x-4\right)\left(x-3\right)\times 3=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-5x+4 by 4.
4x^{2}-20x+16-\left(x^{2}-7x+12\right)\times 3=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x-4 by x-3 and combine like terms.
4x^{2}-20x+16-\left(3x^{2}-21x+36\right)=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-7x+12 by 3.
4x^{2}-20x+16-3x^{2}+21x-36=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
To find the opposite of 3x^{2}-21x+36, find the opposite of each term.
x^{2}-20x+16+21x-36=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}+x+16-36=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Combine -20x and 21x to get x.
x^{2}+x-20=\left(x-4\right)\left(x-3\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Subtract 36 from 16 to get -20.
x^{2}+x-20=\left(x^{2}-7x+12\right)\times 5-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{2}+x-20=5x^{2}-35x+60-\left(x-3\right)\left(x-1\right)\times 4
Use the distributive property to multiply x^{2}-7x+12 by 5.
x^{2}+x-20=5x^{2}-35x+60-\left(x^{2}-4x+3\right)\times 4
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{2}+x-20=5x^{2}-35x+60-\left(4x^{2}-16x+12\right)
Use the distributive property to multiply x^{2}-4x+3 by 4.
x^{2}+x-20=5x^{2}-35x+60-4x^{2}+16x-12
To find the opposite of 4x^{2}-16x+12, find the opposite of each term.
x^{2}+x-20=x^{2}-35x+60+16x-12
Combine 5x^{2} and -4x^{2} to get x^{2}.
x^{2}+x-20=x^{2}-19x+60-12
Combine -35x and 16x to get -19x.
x^{2}+x-20=x^{2}-19x+48
Subtract 12 from 60 to get 48.
x^{2}+x-20-x^{2}=-19x+48
Subtract x^{2} from both sides.
x-20=-19x+48
Combine x^{2} and -x^{2} to get 0.
x-20+19x=48
Add 19x to both sides.
20x-20=48
Combine x and 19x to get 20x.
20x=48+20
Add 20 to both sides.
20x=68
Add 48 and 20 to get 68.
x=\frac{68}{20}
Divide both sides by 20.
x=\frac{17}{5}
Reduce the fraction \frac{68}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}