Solve for x
x=-3
x=5
Graph
Share
Copied to clipboard
\left(2x+2\right)\times 4+2\left(x-1\right)\left(x+1\right)\left(-\frac{1}{2}\right)=\left(2x-2\right)\times 3
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right), the least common multiple of x-1,2,x+1.
8x+8+2\left(x-1\right)\left(x+1\right)\left(-\frac{1}{2}\right)=\left(2x-2\right)\times 3
Use the distributive property to multiply 2x+2 by 4.
8x+8-\left(x-1\right)\left(x+1\right)=\left(2x-2\right)\times 3
Multiply 2 and -\frac{1}{2} to get -1.
8x+8+\left(-x+1\right)\left(x+1\right)=\left(2x-2\right)\times 3
Use the distributive property to multiply -1 by x-1.
8x+8-x^{2}+1=\left(2x-2\right)\times 3
Use the distributive property to multiply -x+1 by x+1 and combine like terms.
8x+9-x^{2}=\left(2x-2\right)\times 3
Add 8 and 1 to get 9.
8x+9-x^{2}=6x-6
Use the distributive property to multiply 2x-2 by 3.
8x+9-x^{2}-6x=-6
Subtract 6x from both sides.
2x+9-x^{2}=-6
Combine 8x and -6x to get 2x.
2x+9-x^{2}+6=0
Add 6 to both sides.
2x+15-x^{2}=0
Add 9 and 6 to get 15.
-x^{2}+2x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
Multiply 4 times 15.
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
Add 4 to 60.
x=\frac{-2±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{-2±8}{-2}
Multiply 2 times -1.
x=\frac{6}{-2}
Now solve the equation x=\frac{-2±8}{-2} when ± is plus. Add -2 to 8.
x=-3
Divide 6 by -2.
x=-\frac{10}{-2}
Now solve the equation x=\frac{-2±8}{-2} when ± is minus. Subtract 8 from -2.
x=5
Divide -10 by -2.
x=-3 x=5
The equation is now solved.
\left(2x+2\right)\times 4+2\left(x-1\right)\left(x+1\right)\left(-\frac{1}{2}\right)=\left(2x-2\right)\times 3
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right), the least common multiple of x-1,2,x+1.
8x+8+2\left(x-1\right)\left(x+1\right)\left(-\frac{1}{2}\right)=\left(2x-2\right)\times 3
Use the distributive property to multiply 2x+2 by 4.
8x+8-\left(x-1\right)\left(x+1\right)=\left(2x-2\right)\times 3
Multiply 2 and -\frac{1}{2} to get -1.
8x+8+\left(-x+1\right)\left(x+1\right)=\left(2x-2\right)\times 3
Use the distributive property to multiply -1 by x-1.
8x+8-x^{2}+1=\left(2x-2\right)\times 3
Use the distributive property to multiply -x+1 by x+1 and combine like terms.
8x+9-x^{2}=\left(2x-2\right)\times 3
Add 8 and 1 to get 9.
8x+9-x^{2}=6x-6
Use the distributive property to multiply 2x-2 by 3.
8x+9-x^{2}-6x=-6
Subtract 6x from both sides.
2x+9-x^{2}=-6
Combine 8x and -6x to get 2x.
2x-x^{2}=-6-9
Subtract 9 from both sides.
2x-x^{2}=-15
Subtract 9 from -6 to get -15.
-x^{2}+2x=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=-\frac{15}{-1}
Divide 2 by -1.
x^{2}-2x=15
Divide -15 by -1.
x^{2}-2x+1=15+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=16
Add 15 to 1.
\left(x-1\right)^{2}=16
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-1=4 x-1=-4
Simplify.
x=5 x=-3
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}