Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x+1 by 4.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x-1 by 2.
6x+4-2=3\left(x-1\right)\left(x+1\right)
Combine 4x and 2x to get 6x.
6x+2=3\left(x-1\right)\left(x+1\right)
Subtract 2 from 4 to get 2.
6x+2=\left(3x-3\right)\left(x+1\right)
Use the distributive property to multiply 3 by x-1.
6x+2=3x^{2}-3
Use the distributive property to multiply 3x-3 by x+1 and combine like terms.
6x+2-3x^{2}=-3
Subtract 3x^{2} from both sides.
6x+2-3x^{2}+3=0
Add 3 to both sides.
6x+5-3x^{2}=0
Add 2 and 3 to get 5.
-3x^{2}+6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square 6.
x=\frac{-6±\sqrt{36+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-6±\sqrt{36+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-6±\sqrt{96}}{2\left(-3\right)}
Add 36 to 60.
x=\frac{-6±4\sqrt{6}}{2\left(-3\right)}
Take the square root of 96.
x=\frac{-6±4\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{6}-6}{-6}
Now solve the equation x=\frac{-6±4\sqrt{6}}{-6} when ± is plus. Add -6 to 4\sqrt{6}.
x=-\frac{2\sqrt{6}}{3}+1
Divide -6+4\sqrt{6} by -6.
x=\frac{-4\sqrt{6}-6}{-6}
Now solve the equation x=\frac{-6±4\sqrt{6}}{-6} when ± is minus. Subtract 4\sqrt{6} from -6.
x=\frac{2\sqrt{6}}{3}+1
Divide -6-4\sqrt{6} by -6.
x=-\frac{2\sqrt{6}}{3}+1 x=\frac{2\sqrt{6}}{3}+1
The equation is now solved.
\left(x+1\right)\times 4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
4x+4+\left(x-1\right)\times 2=3\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x+1 by 4.
4x+4+2x-2=3\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x-1 by 2.
6x+4-2=3\left(x-1\right)\left(x+1\right)
Combine 4x and 2x to get 6x.
6x+2=3\left(x-1\right)\left(x+1\right)
Subtract 2 from 4 to get 2.
6x+2=\left(3x-3\right)\left(x+1\right)
Use the distributive property to multiply 3 by x-1.
6x+2=3x^{2}-3
Use the distributive property to multiply 3x-3 by x+1 and combine like terms.
6x+2-3x^{2}=-3
Subtract 3x^{2} from both sides.
6x-3x^{2}=-3-2
Subtract 2 from both sides.
6x-3x^{2}=-5
Subtract 2 from -3 to get -5.
-3x^{2}+6x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+6x}{-3}=-\frac{5}{-3}
Divide both sides by -3.
x^{2}+\frac{6}{-3}x=-\frac{5}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-2x=-\frac{5}{-3}
Divide 6 by -3.
x^{2}-2x=\frac{5}{3}
Divide -5 by -3.
x^{2}-2x+1=\frac{5}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{8}{3}
Add \frac{5}{3} to 1.
\left(x-1\right)^{2}=\frac{8}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{8}{3}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{6}}{3} x-1=-\frac{2\sqrt{6}}{3}
Simplify.
x=\frac{2\sqrt{6}}{3}+1 x=-\frac{2\sqrt{6}}{3}+1
Add 1 to both sides of the equation.