Solve for x
x = \frac{20}{19} = 1\frac{1}{19} \approx 1.052631579
Graph
Share
Copied to clipboard
5\times 4+5x\left(-6\right)=-11x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
20+5x\left(-6\right)=-11x
Multiply 5 and 4 to get 20.
20-30x=-11x
Multiply 5 and -6 to get -30.
20-30x+11x=0
Add 11x to both sides.
20-19x=0
Combine -30x and 11x to get -19x.
-19x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-20}{-19}
Divide both sides by -19.
x=\frac{20}{19}
Fraction \frac{-20}{-19} can be simplified to \frac{20}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}