Solve for x
x = -\frac{18}{5} = -3\frac{3}{5} = -3.6
Graph
Share
Copied to clipboard
\left(x+4\right)\times 4=1-\left(x+3\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x^{2}+4x.
4x+16=1-\left(x+3\right)
Use the distributive property to multiply x+4 by 4.
4x+16=1-x-3
To find the opposite of x+3, find the opposite of each term.
4x+16=-2-x
Subtract 3 from 1 to get -2.
4x+16+x=-2
Add x to both sides.
5x+16=-2
Combine 4x and x to get 5x.
5x=-2-16
Subtract 16 from both sides.
5x=-18
Subtract 16 from -2 to get -18.
x=\frac{-18}{5}
Divide both sides by 5.
x=-\frac{18}{5}
Fraction \frac{-18}{5} can be rewritten as -\frac{18}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}