Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Graph
Share
Copied to clipboard
\left(x+4\right)\times 4+x-2=\left(x+5\right)\times 2
Variable x cannot be equal to any of the values -5,-4,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+4\right)\left(x+5\right), the least common multiple of x^{2}+3x-10,x^{2}+9x+20,x^{2}+2x-8.
4x+16+x-2=\left(x+5\right)\times 2
Use the distributive property to multiply x+4 by 4.
5x+16-2=\left(x+5\right)\times 2
Combine 4x and x to get 5x.
5x+14=\left(x+5\right)\times 2
Subtract 2 from 16 to get 14.
5x+14=2x+10
Use the distributive property to multiply x+5 by 2.
5x+14-2x=10
Subtract 2x from both sides.
3x+14=10
Combine 5x and -2x to get 3x.
3x=10-14
Subtract 14 from both sides.
3x=-4
Subtract 14 from 10 to get -4.
x=\frac{-4}{3}
Divide both sides by 3.
x=-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}