\frac { 4 } { x + 3 } + \frac { 1,5 } { x } = \frac { 1 } { 2 } \cdot \frac { 31 } { x ^ { 2 } + 3 x }
Solve for x
x=2
Graph
Share
Copied to clipboard
2x\times 4+\left(2x+6\right)\times 1,5=\frac{1}{2}\times 2\times 31
Variable x cannot be equal to any of the values -3;0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x+3\right), the least common multiple of x+3;x;2;x^{2}+3x.
8x+\left(2x+6\right)\times 1,5=\frac{1}{2}\times 2\times 31
Multiply 2 and 4 to get 8.
8x+3x+9=\frac{1}{2}\times 2\times 31
Use the distributive property to multiply 2x+6 by 1,5.
11x+9=\frac{1}{2}\times 2\times 31
Combine 8x and 3x to get 11x.
11x+9=31
Multiply \frac{1}{2} and 2 to get 1.
11x=31-9
Subtract 9 from both sides.
11x=22
Subtract 9 from 31 to get 22.
x=\frac{22}{11}
Divide both sides by 11.
x=2
Divide 22 by 11 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}