Solve for v
v=-\frac{5}{6}\approx -0.833333333
Share
Copied to clipboard
2\times 4=-5+2\left(v+3\right)\times 3
Variable v cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 2\left(v+3\right), the least common multiple of v+3,2v+6.
8=-5+2\left(v+3\right)\times 3
Multiply 2 and 4 to get 8.
8=-5+6\left(v+3\right)
Multiply 2 and 3 to get 6.
8=-5+6v+18
Use the distributive property to multiply 6 by v+3.
8=13+6v
Add -5 and 18 to get 13.
13+6v=8
Swap sides so that all variable terms are on the left hand side.
6v=8-13
Subtract 13 from both sides.
6v=-5
Subtract 13 from 8 to get -5.
v=\frac{-5}{6}
Divide both sides by 6.
v=-\frac{5}{6}
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}