Solve for t
t = -\frac{32}{11} = -2\frac{10}{11} \approx -2.909090909
Share
Copied to clipboard
6\times 4+6t\times \frac{7}{3}=6t\times \frac{1}{2}-2\times 4
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6t, the least common multiple of t,3,2,3t.
24+6t\times \frac{7}{3}=6t\times \frac{1}{2}-2\times 4
Multiply 6 and 4 to get 24.
24+14t=6t\times \frac{1}{2}-2\times 4
Multiply 6 and \frac{7}{3} to get 14.
24+14t=3t-2\times 4
Multiply 6 and \frac{1}{2} to get 3.
24+14t=3t-8
Multiply -2 and 4 to get -8.
24+14t-3t=-8
Subtract 3t from both sides.
24+11t=-8
Combine 14t and -3t to get 11t.
11t=-8-24
Subtract 24 from both sides.
11t=-32
Subtract 24 from -8 to get -32.
t=\frac{-32}{11}
Divide both sides by 11.
t=-\frac{32}{11}
Fraction \frac{-32}{11} can be rewritten as -\frac{32}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}