Solve for k
k=\frac{49}{120}\approx 0.408333333
Share
Copied to clipboard
98\times 4\left(1+\frac{5}{98}k\right)=980k
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 98k, the least common multiple of k,98.
392\left(1+\frac{5}{98}k\right)=980k
Multiply 98 and 4 to get 392.
392+392\times \frac{5}{98}k=980k
Use the distributive property to multiply 392 by 1+\frac{5}{98}k.
392+\frac{392\times 5}{98}k=980k
Express 392\times \frac{5}{98} as a single fraction.
392+\frac{1960}{98}k=980k
Multiply 392 and 5 to get 1960.
392+20k=980k
Divide 1960 by 98 to get 20.
392+20k-980k=0
Subtract 980k from both sides.
392-960k=0
Combine 20k and -980k to get -960k.
-960k=-392
Subtract 392 from both sides. Anything subtracted from zero gives its negation.
k=\frac{-392}{-960}
Divide both sides by -960.
k=\frac{49}{120}
Reduce the fraction \frac{-392}{-960} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}