Solve for k
k=\frac{98}{195}\approx 0.502564103
Share
Copied to clipboard
4\left(1+\frac{5}{9.8}k\right)=10k
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
4\left(1+\frac{50}{98}k\right)=10k
Expand \frac{5}{9.8} by multiplying both numerator and the denominator by 10.
4\left(1+\frac{25}{49}k\right)=10k
Reduce the fraction \frac{50}{98} to lowest terms by extracting and canceling out 2.
4+4\times \frac{25}{49}k=10k
Use the distributive property to multiply 4 by 1+\frac{25}{49}k.
4+\frac{4\times 25}{49}k=10k
Express 4\times \frac{25}{49} as a single fraction.
4+\frac{100}{49}k=10k
Multiply 4 and 25 to get 100.
4+\frac{100}{49}k-10k=0
Subtract 10k from both sides.
4-\frac{390}{49}k=0
Combine \frac{100}{49}k and -10k to get -\frac{390}{49}k.
-\frac{390}{49}k=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
k=-4\left(-\frac{49}{390}\right)
Multiply both sides by -\frac{49}{390}, the reciprocal of -\frac{390}{49}.
k=\frac{-4\left(-49\right)}{390}
Express -4\left(-\frac{49}{390}\right) as a single fraction.
k=\frac{196}{390}
Multiply -4 and -49 to get 196.
k=\frac{98}{195}
Reduce the fraction \frac{196}{390} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}