Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

9b^{2}\times 4+\left(b^{2}+4\right)\times 25=9\left(b-2i\right)\left(b+2i\right)b^{2}
Variable b cannot be equal to any of the values -2i,0,2i since division by zero is not defined. Multiply both sides of the equation by 9\left(b-2i\right)\left(b+2i\right)b^{2}, the least common multiple of b^{2}+4,9b^{2}.
36b^{2}+\left(b^{2}+4\right)\times 25=9\left(b-2i\right)\left(b+2i\right)b^{2}
Multiply 9 and 4 to get 36.
36b^{2}+25b^{2}+100=9\left(b-2i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply b^{2}+4 by 25.
61b^{2}+100=9\left(b-2i\right)\left(b+2i\right)b^{2}
Combine 36b^{2} and 25b^{2} to get 61b^{2}.
61b^{2}+100=\left(9b-18i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply 9 by b-2i.
61b^{2}+100=\left(9b^{2}+36\right)b^{2}
Use the distributive property to multiply 9b-18i by b+2i and combine like terms.
61b^{2}+100=9b^{4}+36b^{2}
Use the distributive property to multiply 9b^{2}+36 by b^{2}.
61b^{2}+100-9b^{4}=36b^{2}
Subtract 9b^{4} from both sides.
61b^{2}+100-9b^{4}-36b^{2}=0
Subtract 36b^{2} from both sides.
25b^{2}+100-9b^{4}=0
Combine 61b^{2} and -36b^{2} to get 25b^{2}.
-9t^{2}+25t+100=0
Substitute t for b^{2}.
t=\frac{-25±\sqrt{25^{2}-4\left(-9\right)\times 100}}{-9\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -9 for a, 25 for b, and 100 for c in the quadratic formula.
t=\frac{-25±65}{-18}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-25±65}{-18} when ± is plus and when ± is minus.
b=-\frac{2\sqrt{5}i}{3} b=\frac{2\sqrt{5}i}{3} b=-\sqrt{5} b=\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
9b^{2}\times 4+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9b^{2}\left(b^{2}+4\right), the least common multiple of b^{2}+4,9b^{2}.
36b^{2}+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Multiply 9 and 4 to get 36.
36b^{2}+25b^{2}+100=9b^{2}\left(b^{2}+4\right)
Use the distributive property to multiply b^{2}+4 by 25.
61b^{2}+100=9b^{2}\left(b^{2}+4\right)
Combine 36b^{2} and 25b^{2} to get 61b^{2}.
61b^{2}+100=9b^{4}+36b^{2}
Use the distributive property to multiply 9b^{2} by b^{2}+4.
61b^{2}+100-9b^{4}=36b^{2}
Subtract 9b^{4} from both sides.
61b^{2}+100-9b^{4}-36b^{2}=0
Subtract 36b^{2} from both sides.
25b^{2}+100-9b^{4}=0
Combine 61b^{2} and -36b^{2} to get 25b^{2}.
-9t^{2}+25t+100=0
Substitute t for b^{2}.
t=\frac{-25±\sqrt{25^{2}-4\left(-9\right)\times 100}}{-9\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -9 for a, 25 for b, and 100 for c in the quadratic formula.
t=\frac{-25±65}{-18}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-25±65}{-18} when ± is plus and when ± is minus.
b=\sqrt{5} b=-\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for positive t.