Solve for b (complex solution)
b=\frac{2\sqrt{5}i}{3}\approx 1.490711985i
b=-\frac{2\sqrt{5}i}{3}\approx -0-1.490711985i
b=-\sqrt{5}\approx -2.236067977
b=\sqrt{5}\approx 2.236067977
Solve for b
b=\sqrt{5}\approx 2.236067977
b=-\sqrt{5}\approx -2.236067977
Share
Copied to clipboard
9b^{2}\times 4+\left(b^{2}+4\right)\times 25=9\left(b-2i\right)\left(b+2i\right)b^{2}
Variable b cannot be equal to any of the values -2i,0,2i since division by zero is not defined. Multiply both sides of the equation by 9\left(b-2i\right)\left(b+2i\right)b^{2}, the least common multiple of b^{2}+4,9b^{2}.
36b^{2}+\left(b^{2}+4\right)\times 25=9\left(b-2i\right)\left(b+2i\right)b^{2}
Multiply 9 and 4 to get 36.
36b^{2}+25b^{2}+100=9\left(b-2i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply b^{2}+4 by 25.
61b^{2}+100=9\left(b-2i\right)\left(b+2i\right)b^{2}
Combine 36b^{2} and 25b^{2} to get 61b^{2}.
61b^{2}+100=\left(9b-18i\right)\left(b+2i\right)b^{2}
Use the distributive property to multiply 9 by b-2i.
61b^{2}+100=\left(9b^{2}+36\right)b^{2}
Use the distributive property to multiply 9b-18i by b+2i and combine like terms.
61b^{2}+100=9b^{4}+36b^{2}
Use the distributive property to multiply 9b^{2}+36 by b^{2}.
61b^{2}+100-9b^{4}=36b^{2}
Subtract 9b^{4} from both sides.
61b^{2}+100-9b^{4}-36b^{2}=0
Subtract 36b^{2} from both sides.
25b^{2}+100-9b^{4}=0
Combine 61b^{2} and -36b^{2} to get 25b^{2}.
-9t^{2}+25t+100=0
Substitute t for b^{2}.
t=\frac{-25±\sqrt{25^{2}-4\left(-9\right)\times 100}}{-9\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -9 for a, 25 for b, and 100 for c in the quadratic formula.
t=\frac{-25±65}{-18}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-25±65}{-18} when ± is plus and when ± is minus.
b=-\frac{2\sqrt{5}i}{3} b=\frac{2\sqrt{5}i}{3} b=-\sqrt{5} b=\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
9b^{2}\times 4+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9b^{2}\left(b^{2}+4\right), the least common multiple of b^{2}+4,9b^{2}.
36b^{2}+\left(b^{2}+4\right)\times 25=9b^{2}\left(b^{2}+4\right)
Multiply 9 and 4 to get 36.
36b^{2}+25b^{2}+100=9b^{2}\left(b^{2}+4\right)
Use the distributive property to multiply b^{2}+4 by 25.
61b^{2}+100=9b^{2}\left(b^{2}+4\right)
Combine 36b^{2} and 25b^{2} to get 61b^{2}.
61b^{2}+100=9b^{4}+36b^{2}
Use the distributive property to multiply 9b^{2} by b^{2}+4.
61b^{2}+100-9b^{4}=36b^{2}
Subtract 9b^{4} from both sides.
61b^{2}+100-9b^{4}-36b^{2}=0
Subtract 36b^{2} from both sides.
25b^{2}+100-9b^{4}=0
Combine 61b^{2} and -36b^{2} to get 25b^{2}.
-9t^{2}+25t+100=0
Substitute t for b^{2}.
t=\frac{-25±\sqrt{25^{2}-4\left(-9\right)\times 100}}{-9\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -9 for a, 25 for b, and 100 for c in the quadratic formula.
t=\frac{-25±65}{-18}
Do the calculations.
t=-\frac{20}{9} t=5
Solve the equation t=\frac{-25±65}{-18} when ± is plus and when ± is minus.
b=\sqrt{5} b=-\sqrt{5}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}