Solve for a
a=-\frac{6}{x\left(6-x\right)}
x\neq 6\text{ and }x\neq 0
Solve for x (complex solution)
x=-\frac{\sqrt{9a^{2}+6a}}{a}+3
x=\frac{\sqrt{9a^{2}+6a}}{a}+3\text{, }a\neq 0
Solve for x
x=-\frac{\sqrt{9a^{2}+6a}}{a}+3
x=\frac{\sqrt{9a^{2}+6a}}{a}+3\text{, }a\leq -\frac{2}{3}\text{ or }a>0
Graph
Share
Copied to clipboard
3\times 4+3ax\times 4=\frac{2}{3}x\times 3ax
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ax, the least common multiple of ax,3.
12+3ax\times 4=\frac{2}{3}x\times 3ax
Multiply 3 and 4 to get 12.
12+12ax=\frac{2}{3}x\times 3ax
Multiply 3 and 4 to get 12.
12+12ax=\frac{2}{3}x^{2}\times 3a
Multiply x and x to get x^{2}.
12+12ax=2x^{2}a
Multiply \frac{2}{3} and 3 to get 2.
12+12ax-2x^{2}a=0
Subtract 2x^{2}a from both sides.
12ax-2x^{2}a=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\left(12x-2x^{2}\right)a=-12
Combine all terms containing a.
\frac{\left(12x-2x^{2}\right)a}{12x-2x^{2}}=-\frac{12}{12x-2x^{2}}
Divide both sides by 12x-2x^{2}.
a=-\frac{12}{12x-2x^{2}}
Dividing by 12x-2x^{2} undoes the multiplication by 12x-2x^{2}.
a=-\frac{6}{x\left(6-x\right)}
Divide -12 by 12x-2x^{2}.
a=-\frac{6}{x\left(6-x\right)}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}