Evaluate
\frac{16+2a-a^{2}}{\left(a+2\right)\left(a-2\right)^{2}}
Differentiate w.r.t. a
\frac{a^{3}-2a^{2}-44a-40}{\left(a+2\right)^{2}\left(a-2\right)^{3}}
Share
Copied to clipboard
\frac{4}{\left(a-2\right)^{2}}-\frac{2}{\left(a-2\right)\left(a+2\right)}-\frac{1}{a-2}
Factor a^{2}-4a+4. Factor a^{2}-4.
\frac{4\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and \left(a-2\right)\left(a+2\right) is \left(a+2\right)\left(a-2\right)^{2}. Multiply \frac{4}{\left(a-2\right)^{2}} times \frac{a+2}{a+2}. Multiply \frac{2}{\left(a-2\right)\left(a+2\right)} times \frac{a-2}{a-2}.
\frac{4\left(a+2\right)-2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Since \frac{4\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}} and \frac{2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8-2a+4}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Do the multiplications in 4\left(a+2\right)-2\left(a-2\right).
\frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Combine like terms in 4a+8-2a+4.
\frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)\left(a-2\right)^{2} and a-2 is \left(a+2\right)\left(a-2\right)^{2}. Multiply \frac{1}{a-2} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{2a+12-\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}
Since \frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}} and \frac{\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+12-a^{2}-2a+2a+4}{\left(a+2\right)\left(a-2\right)^{2}}
Do the multiplications in 2a+12-\left(a-2\right)\left(a+2\right).
\frac{2a+16-a^{2}}{\left(a+2\right)\left(a-2\right)^{2}}
Combine like terms in 2a+12-a^{2}-2a+2a+4.
\frac{2a+16-a^{2}}{a^{3}-2a^{2}-4a+8}
Expand \left(a+2\right)\left(a-2\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}