Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{\left(a-2\right)^{2}}-\frac{2}{\left(a-2\right)\left(a+2\right)}-\frac{1}{a-2}
Factor a^{2}-4a+4. Factor a^{2}-4.
\frac{4\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)^{2} and \left(a-2\right)\left(a+2\right) is \left(a+2\right)\left(a-2\right)^{2}. Multiply \frac{4}{\left(a-2\right)^{2}} times \frac{a+2}{a+2}. Multiply \frac{2}{\left(a-2\right)\left(a+2\right)} times \frac{a-2}{a-2}.
\frac{4\left(a+2\right)-2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Since \frac{4\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}} and \frac{2\left(a-2\right)}{\left(a+2\right)\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{4a+8-2a+4}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Do the multiplications in 4\left(a+2\right)-2\left(a-2\right).
\frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{1}{a-2}
Combine like terms in 4a+8-2a+4.
\frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}}-\frac{\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)\left(a-2\right)^{2} and a-2 is \left(a+2\right)\left(a-2\right)^{2}. Multiply \frac{1}{a-2} times \frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}.
\frac{2a+12-\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}}
Since \frac{2a+12}{\left(a+2\right)\left(a-2\right)^{2}} and \frac{\left(a-2\right)\left(a+2\right)}{\left(a+2\right)\left(a-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+12-a^{2}-2a+2a+4}{\left(a+2\right)\left(a-2\right)^{2}}
Do the multiplications in 2a+12-\left(a-2\right)\left(a+2\right).
\frac{2a+16-a^{2}}{\left(a+2\right)\left(a-2\right)^{2}}
Combine like terms in 2a+12-a^{2}-2a+2a+4.
\frac{2a+16-a^{2}}{a^{3}-2a^{2}-4a+8}
Expand \left(a+2\right)\left(a-2\right)^{2}.