Solve for y
y = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
Graph
Quiz
Linear Equation
\frac { 4 } { 9 y ^ { 2 } - 1 } - \frac { 4 } { 3 y + 1 } = \frac { 5 } { 1 - 3 y }
Share
Copied to clipboard
4-\left(3y-1\right)\times 4=\left(-1-3y\right)\times 5
Variable y cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3y-1\right)\left(3y+1\right), the least common multiple of 9y^{2}-1,3y+1,1-3y.
4-\left(12y-4\right)=\left(-1-3y\right)\times 5
Use the distributive property to multiply 3y-1 by 4.
4-12y+4=\left(-1-3y\right)\times 5
To find the opposite of 12y-4, find the opposite of each term.
8-12y=\left(-1-3y\right)\times 5
Add 4 and 4 to get 8.
8-12y=-5-15y
Use the distributive property to multiply -1-3y by 5.
8-12y+15y=-5
Add 15y to both sides.
8+3y=-5
Combine -12y and 15y to get 3y.
3y=-5-8
Subtract 8 from both sides.
3y=-13
Subtract 8 from -5 to get -13.
y=\frac{-13}{3}
Divide both sides by 3.
y=-\frac{13}{3}
Fraction \frac{-13}{3} can be rewritten as -\frac{13}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}