Solve for w
w\geq -\frac{27}{44}
Share
Copied to clipboard
\frac{4}{9}w+1+2w\geq -\frac{1}{2}
Add 2w to both sides.
\frac{22}{9}w+1\geq -\frac{1}{2}
Combine \frac{4}{9}w and 2w to get \frac{22}{9}w.
\frac{22}{9}w\geq -\frac{1}{2}-1
Subtract 1 from both sides.
\frac{22}{9}w\geq -\frac{1}{2}-\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{22}{9}w\geq \frac{-1-2}{2}
Since -\frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{22}{9}w\geq -\frac{3}{2}
Subtract 2 from -1 to get -3.
w\geq -\frac{3}{2}\times \frac{9}{22}
Multiply both sides by \frac{9}{22}, the reciprocal of \frac{22}{9}. Since \frac{22}{9} is positive, the inequality direction remains the same.
w\geq \frac{-3\times 9}{2\times 22}
Multiply -\frac{3}{2} times \frac{9}{22} by multiplying numerator times numerator and denominator times denominator.
w\geq \frac{-27}{44}
Do the multiplications in the fraction \frac{-3\times 9}{2\times 22}.
w\geq -\frac{27}{44}
Fraction \frac{-27}{44} can be rewritten as -\frac{27}{44} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}