Evaluate
\frac{16mn}{9}+\frac{16m^{2}}{9}-\frac{11n^{2}}{6}
Factor
\frac{32m^{2}+32mn-33n^{2}}{18}
Share
Copied to clipboard
\frac{4}{9}mn+\frac{16}{9}m^{2}+\frac{5}{12}n^{2}+\frac{4}{3}mn-\frac{9}{4}n^{2}
Combine \frac{11}{18}m^{2} and \frac{7}{6}m^{2} to get \frac{16}{9}m^{2}.
\frac{16}{9}mn+\frac{16}{9}m^{2}+\frac{5}{12}n^{2}-\frac{9}{4}n^{2}
Combine \frac{4}{9}mn and \frac{4}{3}mn to get \frac{16}{9}mn.
\frac{16}{9}mn+\frac{16}{9}m^{2}-\frac{11}{6}n^{2}
Combine \frac{5}{12}n^{2} and -\frac{9}{4}n^{2} to get -\frac{11}{6}n^{2}.
\frac{16mn+22m^{2}+15n^{2}+42m^{2}+48mn-81n^{2}}{36}
Factor out \frac{1}{36}.
64m^{2}+64mn-66n^{2}
Consider 16mn+22m^{2}+15n^{2}+42m^{2}+48mn-81n^{2}. Multiply and combine like terms.
2\left(32m^{2}+32mn-33n^{2}\right)
Consider 64m^{2}+64mn-66n^{2}. Factor out 2.
\frac{32m^{2}+32mn-33n^{2}}{18}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}