Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{9}be^{2}dividdtoget\times \frac{8}{11}
Multiply e and e to get e^{2}.
\frac{4}{9}be^{3}dividdtogt\times \frac{8}{11}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{4}{9}be^{3}d^{2}ividtogt\times \frac{8}{11}
Multiply d and d to get d^{2}.
\frac{4}{9}be^{3}d^{3}ivitogt\times \frac{8}{11}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{4}{9}be^{3}d^{3}ivit^{2}og\times \frac{8}{11}
Multiply t and t to get t^{2}.
\frac{4}{9}ibe^{3}d^{3}vit^{2}og\times \frac{8}{11}
Multiply \frac{4}{9} and i to get \frac{4}{9}i.
-\frac{4}{9}be^{3}d^{3}vt^{2}og\times \frac{8}{11}
Multiply \frac{4}{9}i and i to get -\frac{4}{9}.
\frac{-4\times 8}{9\times 11}be^{3}d^{3}vt^{2}og
Multiply -\frac{4}{9} times \frac{8}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-32}{99}be^{3}d^{3}vt^{2}og
Do the multiplications in the fraction \frac{-4\times 8}{9\times 11}.
-\frac{32}{99}be^{3}d^{3}vt^{2}og
Fraction \frac{-32}{99} can be rewritten as -\frac{32}{99} by extracting the negative sign.