Solve for x
x\leq \frac{448}{19}
Graph
Share
Copied to clipboard
\frac{4}{7}x\geq \frac{1}{4}\times 5x+\frac{1}{4}\left(-64\right)
Use the distributive property to multiply \frac{1}{4} by 5x-64.
\frac{4}{7}x\geq \frac{5}{4}x+\frac{1}{4}\left(-64\right)
Multiply \frac{1}{4} and 5 to get \frac{5}{4}.
\frac{4}{7}x\geq \frac{5}{4}x+\frac{-64}{4}
Multiply \frac{1}{4} and -64 to get \frac{-64}{4}.
\frac{4}{7}x\geq \frac{5}{4}x-16
Divide -64 by 4 to get -16.
\frac{4}{7}x-\frac{5}{4}x\geq -16
Subtract \frac{5}{4}x from both sides.
-\frac{19}{28}x\geq -16
Combine \frac{4}{7}x and -\frac{5}{4}x to get -\frac{19}{28}x.
x\leq -16\left(-\frac{28}{19}\right)
Multiply both sides by -\frac{28}{19}, the reciprocal of -\frac{19}{28}. Since -\frac{19}{28} is negative, the inequality direction is changed.
x\leq \frac{-16\left(-28\right)}{19}
Express -16\left(-\frac{28}{19}\right) as a single fraction.
x\leq \frac{448}{19}
Multiply -16 and -28 to get 448.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}