Evaluate
\frac{106+3a-15a^{2}}{7}
Expand
\frac{106+3a-15a^{2}}{7}
Share
Copied to clipboard
\frac{4}{7}\times 2a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Use the distributive property to multiply \frac{4}{7} by 2a+9.
\frac{4\times 2}{7}a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Express \frac{4}{7}\times 2 as a single fraction.
\frac{8}{7}a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Multiply 4 and 2 to get 8.
\frac{8}{7}a+\frac{4\times 9}{7}-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Express \frac{4}{7}\times 9 as a single fraction.
\frac{8}{7}a+\frac{36}{7}-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Multiply 4 and 9 to get 36.
\frac{8}{7}a+\frac{36}{7}-\frac{2\times 3}{3\times 14}\left(3a+7\right)\left(5a-10\right)
Multiply \frac{2}{3} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{7}a+\frac{36}{7}-\frac{2}{14}\left(3a+7\right)\left(5a-10\right)
Cancel out 3 in both numerator and denominator.
\frac{8}{7}a+\frac{36}{7}-\frac{1}{7}\left(3a+7\right)\left(5a-10\right)
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{1}{7}\times 3a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Use the distributive property to multiply -\frac{1}{7} by 3a+7.
\frac{8}{7}a+\frac{36}{7}+\left(\frac{-3}{7}a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Express -\frac{1}{7}\times 3 as a single fraction.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{3}{7}a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{3}{7}a-1\right)\left(5a-10\right)
Cancel out 7 and 7.
\frac{8}{7}a+\frac{36}{7}-\frac{3}{7}a\times 5a-\frac{3}{7}a\left(-10\right)-5a+10
Apply the distributive property by multiplying each term of -\frac{3}{7}a-1 by each term of 5a-10.
\frac{8}{7}a+\frac{36}{7}-\frac{3}{7}a^{2}\times 5-\frac{3}{7}a\left(-10\right)-5a+10
Multiply a and a to get a^{2}.
\frac{8}{7}a+\frac{36}{7}+\frac{-3\times 5}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Express -\frac{3}{7}\times 5 as a single fraction.
\frac{8}{7}a+\frac{36}{7}+\frac{-15}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Multiply -3 and 5 to get -15.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Fraction \frac{-15}{7} can be rewritten as -\frac{15}{7} by extracting the negative sign.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{-3\left(-10\right)}{7}a-5a+10
Express -\frac{3}{7}\left(-10\right) as a single fraction.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{30}{7}a-5a+10
Multiply -3 and -10 to get 30.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}-\frac{5}{7}a+10
Combine \frac{30}{7}a and -5a to get -\frac{5}{7}a.
\frac{3}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+10
Combine \frac{8}{7}a and -\frac{5}{7}a to get \frac{3}{7}a.
\frac{3}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{70}{7}
Convert 10 to fraction \frac{70}{7}.
\frac{3}{7}a+\frac{36+70}{7}-\frac{15}{7}a^{2}
Since \frac{36}{7} and \frac{70}{7} have the same denominator, add them by adding their numerators.
\frac{3}{7}a+\frac{106}{7}-\frac{15}{7}a^{2}
Add 36 and 70 to get 106.
\frac{4}{7}\times 2a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Use the distributive property to multiply \frac{4}{7} by 2a+9.
\frac{4\times 2}{7}a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Express \frac{4}{7}\times 2 as a single fraction.
\frac{8}{7}a+\frac{4}{7}\times 9-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Multiply 4 and 2 to get 8.
\frac{8}{7}a+\frac{4\times 9}{7}-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Express \frac{4}{7}\times 9 as a single fraction.
\frac{8}{7}a+\frac{36}{7}-\frac{2}{3}\left(3a+7\right)\times \frac{3}{14}\left(5a-10\right)
Multiply 4 and 9 to get 36.
\frac{8}{7}a+\frac{36}{7}-\frac{2\times 3}{3\times 14}\left(3a+7\right)\left(5a-10\right)
Multiply \frac{2}{3} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{7}a+\frac{36}{7}-\frac{2}{14}\left(3a+7\right)\left(5a-10\right)
Cancel out 3 in both numerator and denominator.
\frac{8}{7}a+\frac{36}{7}-\frac{1}{7}\left(3a+7\right)\left(5a-10\right)
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{1}{7}\times 3a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Use the distributive property to multiply -\frac{1}{7} by 3a+7.
\frac{8}{7}a+\frac{36}{7}+\left(\frac{-3}{7}a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Express -\frac{1}{7}\times 3 as a single fraction.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{3}{7}a-\frac{1}{7}\times 7\right)\left(5a-10\right)
Fraction \frac{-3}{7} can be rewritten as -\frac{3}{7} by extracting the negative sign.
\frac{8}{7}a+\frac{36}{7}+\left(-\frac{3}{7}a-1\right)\left(5a-10\right)
Cancel out 7 and 7.
\frac{8}{7}a+\frac{36}{7}-\frac{3}{7}a\times 5a-\frac{3}{7}a\left(-10\right)-5a+10
Apply the distributive property by multiplying each term of -\frac{3}{7}a-1 by each term of 5a-10.
\frac{8}{7}a+\frac{36}{7}-\frac{3}{7}a^{2}\times 5-\frac{3}{7}a\left(-10\right)-5a+10
Multiply a and a to get a^{2}.
\frac{8}{7}a+\frac{36}{7}+\frac{-3\times 5}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Express -\frac{3}{7}\times 5 as a single fraction.
\frac{8}{7}a+\frac{36}{7}+\frac{-15}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Multiply -3 and 5 to get -15.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}-\frac{3}{7}a\left(-10\right)-5a+10
Fraction \frac{-15}{7} can be rewritten as -\frac{15}{7} by extracting the negative sign.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{-3\left(-10\right)}{7}a-5a+10
Express -\frac{3}{7}\left(-10\right) as a single fraction.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{30}{7}a-5a+10
Multiply -3 and -10 to get 30.
\frac{8}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}-\frac{5}{7}a+10
Combine \frac{30}{7}a and -5a to get -\frac{5}{7}a.
\frac{3}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+10
Combine \frac{8}{7}a and -\frac{5}{7}a to get \frac{3}{7}a.
\frac{3}{7}a+\frac{36}{7}-\frac{15}{7}a^{2}+\frac{70}{7}
Convert 10 to fraction \frac{70}{7}.
\frac{3}{7}a+\frac{36+70}{7}-\frac{15}{7}a^{2}
Since \frac{36}{7} and \frac{70}{7} have the same denominator, add them by adding their numerators.
\frac{3}{7}a+\frac{106}{7}-\frac{15}{7}a^{2}
Add 36 and 70 to get 106.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}