Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{4}{7}-\frac{4+1}{2}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Multiply 2 and 2 to get 4.
\frac{4}{7}-\frac{5}{2}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Add 4 and 1 to get 5.
\frac{8}{14}-\frac{35}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Least common multiple of 7 and 2 is 14. Convert \frac{4}{7} and \frac{5}{2} to fractions with denominator 14.
\frac{8-35}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Since \frac{8}{14} and \frac{35}{14} have the same denominator, subtract them by subtracting their numerators.
-\frac{27}{14}+\frac{1}{2}-\left(-\frac{1\times 7+3}{7}\right)
Subtract 35 from 8 to get -27.
-\frac{27}{14}+\frac{7}{14}-\left(-\frac{1\times 7+3}{7}\right)
Least common multiple of 14 and 2 is 14. Convert -\frac{27}{14} and \frac{1}{2} to fractions with denominator 14.
\frac{-27+7}{14}-\left(-\frac{1\times 7+3}{7}\right)
Since -\frac{27}{14} and \frac{7}{14} have the same denominator, add them by adding their numerators.
\frac{-20}{14}-\left(-\frac{1\times 7+3}{7}\right)
Add -27 and 7 to get -20.
-\frac{10}{7}-\left(-\frac{1\times 7+3}{7}\right)
Reduce the fraction \frac{-20}{14} to lowest terms by extracting and canceling out 2.
-\frac{10}{7}-\left(-\frac{7+3}{7}\right)
Multiply 1 and 7 to get 7.
-\frac{10}{7}-\left(-\frac{10}{7}\right)
Add 7 and 3 to get 10.
-\frac{10}{7}+\frac{10}{7}
The opposite of -\frac{10}{7} is \frac{10}{7}.
0
Add -\frac{10}{7} and \frac{10}{7} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}