Evaluate
\frac{51}{77}\approx 0.662337662
Factor
\frac{3 \cdot 17}{7 \cdot 11} = 0.6623376623376623
Share
Copied to clipboard
\frac{4}{7}+\frac{3}{11}\left(\frac{5}{6}-\frac{1}{2}\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{4}{7}+\frac{3}{11}\left(\frac{5}{6}-\frac{3}{6}\right)
Least common multiple of 6 and 2 is 6. Convert \frac{5}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{4}{7}+\frac{3}{11}\times \frac{5-3}{6}
Since \frac{5}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{7}+\frac{3}{11}\times \frac{2}{6}
Subtract 3 from 5 to get 2.
\frac{4}{7}+\frac{3}{11}\times \frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{7}+\frac{3\times 1}{11\times 3}
Multiply \frac{3}{11} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{7}+\frac{1}{11}
Cancel out 3 in both numerator and denominator.
\frac{44}{77}+\frac{7}{77}
Least common multiple of 7 and 11 is 77. Convert \frac{4}{7} and \frac{1}{11} to fractions with denominator 77.
\frac{44+7}{77}
Since \frac{44}{77} and \frac{7}{77} have the same denominator, add them by adding their numerators.
\frac{51}{77}
Add 44 and 7 to get 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}