Solve for x
x>-\frac{29}{9}
Graph
Share
Copied to clipboard
30\left(\frac{4}{5}x-\frac{2\times 2+1}{2}x\right)-60<90-5-6x
Multiply both sides of the equation by 30, the least common multiple of 5,2,6. Since 30 is positive, the inequality direction remains the same.
30\left(\frac{4}{5}x-\frac{4+1}{2}x\right)-60<90-5-6x
Multiply 2 and 2 to get 4.
30\left(\frac{4}{5}x-\frac{5}{2}x\right)-60<90-5-6x
Add 4 and 1 to get 5.
30\left(-\frac{17}{10}\right)x-60<90-5-6x
Combine \frac{4}{5}x and -\frac{5}{2}x to get -\frac{17}{10}x.
\frac{30\left(-17\right)}{10}x-60<90-5-6x
Express 30\left(-\frac{17}{10}\right) as a single fraction.
\frac{-510}{10}x-60<90-5-6x
Multiply 30 and -17 to get -510.
-51x-60<90-5-6x
Divide -510 by 10 to get -51.
-51x-60<85-6x
Subtract 5 from 90 to get 85.
-51x-60+6x<85
Add 6x to both sides.
-45x-60<85
Combine -51x and 6x to get -45x.
-45x<85+60
Add 60 to both sides.
-45x<145
Add 85 and 60 to get 145.
x>\frac{145}{-45}
Divide both sides by -45. Since -45 is negative, the inequality direction is changed.
x>-\frac{29}{9}
Reduce the fraction \frac{145}{-45} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}