Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{3}{5}\sqrt{1-x^{2}}=\frac{5}{13}-\frac{4}{5}x
Subtract \frac{4}{5}x from both sides of the equation.
\left(-\frac{3}{5}\sqrt{1-x^{2}}\right)^{2}=\left(\frac{5}{13}-\frac{4}{5}x\right)^{2}
Square both sides of the equation.
\left(-\frac{3}{5}\right)^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{5}{13}-\frac{4}{5}x\right)^{2}
Expand \left(-\frac{3}{5}\sqrt{1-x^{2}}\right)^{2}.
\frac{9}{25}\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{5}{13}-\frac{4}{5}x\right)^{2}
Calculate -\frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{9}{25}\left(1-x^{2}\right)=\left(\frac{5}{13}-\frac{4}{5}x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
\frac{9}{25}-\frac{9}{25}x^{2}=\left(\frac{5}{13}-\frac{4}{5}x\right)^{2}
Use the distributive property to multiply \frac{9}{25} by 1-x^{2}.
\frac{9}{25}-\frac{9}{25}x^{2}=\frac{25}{169}-\frac{8}{13}x+\frac{16}{25}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{13}-\frac{4}{5}x\right)^{2}.
\frac{9}{25}-\frac{9}{25}x^{2}-\frac{25}{169}=-\frac{8}{13}x+\frac{16}{25}x^{2}
Subtract \frac{25}{169} from both sides.
\frac{896}{4225}-\frac{9}{25}x^{2}=-\frac{8}{13}x+\frac{16}{25}x^{2}
Subtract \frac{25}{169} from \frac{9}{25} to get \frac{896}{4225}.
\frac{896}{4225}-\frac{9}{25}x^{2}+\frac{8}{13}x=\frac{16}{25}x^{2}
Add \frac{8}{13}x to both sides.
\frac{896}{4225}-\frac{9}{25}x^{2}+\frac{8}{13}x-\frac{16}{25}x^{2}=0
Subtract \frac{16}{25}x^{2} from both sides.
\frac{896}{4225}-x^{2}+\frac{8}{13}x=0
Combine -\frac{9}{25}x^{2} and -\frac{16}{25}x^{2} to get -x^{2}.
-x^{2}+\frac{8}{13}x+\frac{896}{4225}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{8}{13}±\sqrt{\left(\frac{8}{13}\right)^{2}-4\left(-1\right)\times \frac{896}{4225}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{8}{13} for b, and \frac{896}{4225} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{8}{13}±\sqrt{\frac{64}{169}-4\left(-1\right)\times \frac{896}{4225}}}{2\left(-1\right)}
Square \frac{8}{13} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{8}{13}±\sqrt{\frac{64}{169}+4\times \frac{896}{4225}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{8}{13}±\sqrt{\frac{64}{169}+\frac{3584}{4225}}}{2\left(-1\right)}
Multiply 4 times \frac{896}{4225}.
x=\frac{-\frac{8}{13}±\sqrt{\frac{5184}{4225}}}{2\left(-1\right)}
Add \frac{64}{169} to \frac{3584}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{8}{13}±\frac{72}{65}}{2\left(-1\right)}
Take the square root of \frac{5184}{4225}.
x=\frac{-\frac{8}{13}±\frac{72}{65}}{-2}
Multiply 2 times -1.
x=\frac{\frac{32}{65}}{-2}
Now solve the equation x=\frac{-\frac{8}{13}±\frac{72}{65}}{-2} when ± is plus. Add -\frac{8}{13} to \frac{72}{65} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{16}{65}
Divide \frac{32}{65} by -2.
x=-\frac{\frac{112}{65}}{-2}
Now solve the equation x=\frac{-\frac{8}{13}±\frac{72}{65}}{-2} when ± is minus. Subtract \frac{72}{65} from -\frac{8}{13} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{56}{65}
Divide -\frac{112}{65} by -2.
x=-\frac{16}{65} x=\frac{56}{65}
The equation is now solved.
\frac{4}{5}\left(-\frac{16}{65}\right)-\frac{3}{5}\sqrt{1-\left(-\frac{16}{65}\right)^{2}}=\frac{5}{13}
Substitute -\frac{16}{65} for x in the equation \frac{4}{5}x-\frac{3}{5}\sqrt{1-x^{2}}=\frac{5}{13}.
-\frac{253}{325}=\frac{5}{13}
Simplify. The value x=-\frac{16}{65} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{4}{5}\times \frac{56}{65}-\frac{3}{5}\sqrt{1-\left(\frac{56}{65}\right)^{2}}=\frac{5}{13}
Substitute \frac{56}{65} for x in the equation \frac{4}{5}x-\frac{3}{5}\sqrt{1-x^{2}}=\frac{5}{13}.
\frac{5}{13}=\frac{5}{13}
Simplify. The value x=\frac{56}{65} satisfies the equation.
x=\frac{56}{65}
Equation -\frac{3\sqrt{1-x^{2}}}{5}=-\frac{4x}{5}+\frac{5}{13} has a unique solution.