Solve for x
x=\frac{\sqrt{865}-25}{8}\approx 0.551360292
x=\frac{-\sqrt{865}-25}{8}\approx -6.801360292
Graph
Share
Copied to clipboard
\frac{4}{5}x^{2}+5x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times \frac{4}{5}\left(-3\right)}}{2\times \frac{4}{5}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{5} for a, 5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times \frac{4}{5}\left(-3\right)}}{2\times \frac{4}{5}}
Square 5.
x=\frac{-5±\sqrt{25-\frac{16}{5}\left(-3\right)}}{2\times \frac{4}{5}}
Multiply -4 times \frac{4}{5}.
x=\frac{-5±\sqrt{25+\frac{48}{5}}}{2\times \frac{4}{5}}
Multiply -\frac{16}{5} times -3.
x=\frac{-5±\sqrt{\frac{173}{5}}}{2\times \frac{4}{5}}
Add 25 to \frac{48}{5}.
x=\frac{-5±\frac{\sqrt{865}}{5}}{2\times \frac{4}{5}}
Take the square root of \frac{173}{5}.
x=\frac{-5±\frac{\sqrt{865}}{5}}{\frac{8}{5}}
Multiply 2 times \frac{4}{5}.
x=\frac{\frac{\sqrt{865}}{5}-5}{\frac{8}{5}}
Now solve the equation x=\frac{-5±\frac{\sqrt{865}}{5}}{\frac{8}{5}} when ± is plus. Add -5 to \frac{\sqrt{865}}{5}.
x=\frac{\sqrt{865}-25}{8}
Divide -5+\frac{\sqrt{865}}{5} by \frac{8}{5} by multiplying -5+\frac{\sqrt{865}}{5} by the reciprocal of \frac{8}{5}.
x=\frac{-\frac{\sqrt{865}}{5}-5}{\frac{8}{5}}
Now solve the equation x=\frac{-5±\frac{\sqrt{865}}{5}}{\frac{8}{5}} when ± is minus. Subtract \frac{\sqrt{865}}{5} from -5.
x=\frac{-\sqrt{865}-25}{8}
Divide -5-\frac{\sqrt{865}}{5} by \frac{8}{5} by multiplying -5-\frac{\sqrt{865}}{5} by the reciprocal of \frac{8}{5}.
x=\frac{\sqrt{865}-25}{8} x=\frac{-\sqrt{865}-25}{8}
The equation is now solved.
\frac{4}{5}x^{2}+5x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4}{5}x^{2}+5x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
\frac{4}{5}x^{2}+5x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
\frac{4}{5}x^{2}+5x=3
Subtract -3 from 0.
\frac{\frac{4}{5}x^{2}+5x}{\frac{4}{5}}=\frac{3}{\frac{4}{5}}
Divide both sides of the equation by \frac{4}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{5}{\frac{4}{5}}x=\frac{3}{\frac{4}{5}}
Dividing by \frac{4}{5} undoes the multiplication by \frac{4}{5}.
x^{2}+\frac{25}{4}x=\frac{3}{\frac{4}{5}}
Divide 5 by \frac{4}{5} by multiplying 5 by the reciprocal of \frac{4}{5}.
x^{2}+\frac{25}{4}x=\frac{15}{4}
Divide 3 by \frac{4}{5} by multiplying 3 by the reciprocal of \frac{4}{5}.
x^{2}+\frac{25}{4}x+\left(\frac{25}{8}\right)^{2}=\frac{15}{4}+\left(\frac{25}{8}\right)^{2}
Divide \frac{25}{4}, the coefficient of the x term, by 2 to get \frac{25}{8}. Then add the square of \frac{25}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{4}x+\frac{625}{64}=\frac{15}{4}+\frac{625}{64}
Square \frac{25}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{4}x+\frac{625}{64}=\frac{865}{64}
Add \frac{15}{4} to \frac{625}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{8}\right)^{2}=\frac{865}{64}
Factor x^{2}+\frac{25}{4}x+\frac{625}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{8}\right)^{2}}=\sqrt{\frac{865}{64}}
Take the square root of both sides of the equation.
x+\frac{25}{8}=\frac{\sqrt{865}}{8} x+\frac{25}{8}=-\frac{\sqrt{865}}{8}
Simplify.
x=\frac{\sqrt{865}-25}{8} x=\frac{-\sqrt{865}-25}{8}
Subtract \frac{25}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}