Solve for f
f\geq \frac{13}{4}
Share
Copied to clipboard
8f-5\geq 2\times 10+1
Multiply both sides of the equation by 10, the least common multiple of 5,2,10. Since 10 is positive, the inequality direction remains the same.
8f-5\geq 20+1
Multiply 2 and 10 to get 20.
8f-5\geq 21
Add 20 and 1 to get 21.
8f\geq 21+5
Add 5 to both sides.
8f\geq 26
Add 21 and 5 to get 26.
f\geq \frac{26}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
f\geq \frac{13}{4}
Reduce the fraction \frac{26}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}