Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Use the distributive property to multiply \frac{4}{5} by x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Express \frac{4}{5}\left(-2\right) as a single fraction.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Multiply 4 and -2 to get -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Use the distributive property to multiply -\frac{1}{6} by 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Express -\frac{1}{6}\times 3 as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Express -\frac{1}{6}\left(-4\right) as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Multiply -1 and -4 to get 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Combine \frac{4}{5}x and -\frac{1}{2}x to get \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{8}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3}{10}x+\frac{-24+10}{15}
Since -\frac{24}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{3}{10}x-\frac{14}{15}
Add -24 and 10 to get -14.
\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Use the distributive property to multiply \frac{4}{5} by x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Express \frac{4}{5}\left(-2\right) as a single fraction.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Multiply 4 and -2 to get -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Use the distributive property to multiply -\frac{1}{6} by 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Express -\frac{1}{6}\times 3 as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Express -\frac{1}{6}\left(-4\right) as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Multiply -1 and -4 to get 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Combine \frac{4}{5}x and -\frac{1}{2}x to get \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{8}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3}{10}x+\frac{-24+10}{15}
Since -\frac{24}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{3}{10}x-\frac{14}{15}
Add -24 and 10 to get -14.