Evaluate
\frac{3x}{10}-\frac{14}{15}
Expand
\frac{3x}{10}-\frac{14}{15}
Graph
Share
Copied to clipboard
\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Use the distributive property to multiply \frac{4}{5} by x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Express \frac{4}{5}\left(-2\right) as a single fraction.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Multiply 4 and -2 to get -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Use the distributive property to multiply -\frac{1}{6} by 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Express -\frac{1}{6}\times 3 as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Express -\frac{1}{6}\left(-4\right) as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Multiply -1 and -4 to get 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Combine \frac{4}{5}x and -\frac{1}{2}x to get \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{8}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3}{10}x+\frac{-24+10}{15}
Since -\frac{24}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{3}{10}x-\frac{14}{15}
Add -24 and 10 to get -14.
\frac{4}{5}x+\frac{4}{5}\left(-2\right)-\frac{1}{6}\left(3x-4\right)
Use the distributive property to multiply \frac{4}{5} by x-2.
\frac{4}{5}x+\frac{4\left(-2\right)}{5}-\frac{1}{6}\left(3x-4\right)
Express \frac{4}{5}\left(-2\right) as a single fraction.
\frac{4}{5}x+\frac{-8}{5}-\frac{1}{6}\left(3x-4\right)
Multiply 4 and -2 to get -8.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\left(3x-4\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{6}\times 3x-\frac{1}{6}\left(-4\right)
Use the distributive property to multiply -\frac{1}{6} by 3x-4.
\frac{4}{5}x-\frac{8}{5}+\frac{-3}{6}x-\frac{1}{6}\left(-4\right)
Express -\frac{1}{6}\times 3 as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x-\frac{1}{6}\left(-4\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{-\left(-4\right)}{6}
Express -\frac{1}{6}\left(-4\right) as a single fraction.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{4}{6}
Multiply -1 and -4 to get 4.
\frac{4}{5}x-\frac{8}{5}-\frac{1}{2}x+\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{10}x-\frac{8}{5}+\frac{2}{3}
Combine \frac{4}{5}x and -\frac{1}{2}x to get \frac{3}{10}x.
\frac{3}{10}x-\frac{24}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{8}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3}{10}x+\frac{-24+10}{15}
Since -\frac{24}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{3}{10}x-\frac{14}{15}
Add -24 and 10 to get -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}