Solve for x
x = -\frac{54}{37} = -1\frac{17}{37} \approx -1.459459459
Graph
Share
Copied to clipboard
\frac{4}{5}x+\frac{4}{5}\times 3+\frac{7}{10}\left(x-2\right)=\frac{4}{15}\left(x-3\right)
Use the distributive property to multiply \frac{4}{5} by x+3.
\frac{4}{5}x+\frac{4\times 3}{5}+\frac{7}{10}\left(x-2\right)=\frac{4}{15}\left(x-3\right)
Express \frac{4}{5}\times 3 as a single fraction.
\frac{4}{5}x+\frac{12}{5}+\frac{7}{10}\left(x-2\right)=\frac{4}{15}\left(x-3\right)
Multiply 4 and 3 to get 12.
\frac{4}{5}x+\frac{12}{5}+\frac{7}{10}x+\frac{7}{10}\left(-2\right)=\frac{4}{15}\left(x-3\right)
Use the distributive property to multiply \frac{7}{10} by x-2.
\frac{4}{5}x+\frac{12}{5}+\frac{7}{10}x+\frac{7\left(-2\right)}{10}=\frac{4}{15}\left(x-3\right)
Express \frac{7}{10}\left(-2\right) as a single fraction.
\frac{4}{5}x+\frac{12}{5}+\frac{7}{10}x+\frac{-14}{10}=\frac{4}{15}\left(x-3\right)
Multiply 7 and -2 to get -14.
\frac{4}{5}x+\frac{12}{5}+\frac{7}{10}x-\frac{7}{5}=\frac{4}{15}\left(x-3\right)
Reduce the fraction \frac{-14}{10} to lowest terms by extracting and canceling out 2.
\frac{3}{2}x+\frac{12}{5}-\frac{7}{5}=\frac{4}{15}\left(x-3\right)
Combine \frac{4}{5}x and \frac{7}{10}x to get \frac{3}{2}x.
\frac{3}{2}x+\frac{12-7}{5}=\frac{4}{15}\left(x-3\right)
Since \frac{12}{5} and \frac{7}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}x+\frac{5}{5}=\frac{4}{15}\left(x-3\right)
Subtract 7 from 12 to get 5.
\frac{3}{2}x+1=\frac{4}{15}\left(x-3\right)
Divide 5 by 5 to get 1.
\frac{3}{2}x+1=\frac{4}{15}x+\frac{4}{15}\left(-3\right)
Use the distributive property to multiply \frac{4}{15} by x-3.
\frac{3}{2}x+1=\frac{4}{15}x+\frac{4\left(-3\right)}{15}
Express \frac{4}{15}\left(-3\right) as a single fraction.
\frac{3}{2}x+1=\frac{4}{15}x+\frac{-12}{15}
Multiply 4 and -3 to get -12.
\frac{3}{2}x+1=\frac{4}{15}x-\frac{4}{5}
Reduce the fraction \frac{-12}{15} to lowest terms by extracting and canceling out 3.
\frac{3}{2}x+1-\frac{4}{15}x=-\frac{4}{5}
Subtract \frac{4}{15}x from both sides.
\frac{37}{30}x+1=-\frac{4}{5}
Combine \frac{3}{2}x and -\frac{4}{15}x to get \frac{37}{30}x.
\frac{37}{30}x=-\frac{4}{5}-1
Subtract 1 from both sides.
\frac{37}{30}x=-\frac{4}{5}-\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{37}{30}x=\frac{-4-5}{5}
Since -\frac{4}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{37}{30}x=-\frac{9}{5}
Subtract 5 from -4 to get -9.
x=-\frac{9}{5}\times \frac{30}{37}
Multiply both sides by \frac{30}{37}, the reciprocal of \frac{37}{30}.
x=\frac{-9\times 30}{5\times 37}
Multiply -\frac{9}{5} times \frac{30}{37} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-270}{185}
Do the multiplications in the fraction \frac{-9\times 30}{5\times 37}.
x=-\frac{54}{37}
Reduce the fraction \frac{-270}{185} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}