Solve for x
x=\frac{4}{7}\approx 0.571428571
Graph
Share
Copied to clipboard
\frac{4}{5}\times \frac{10}{3}x+\frac{4}{5}\times \frac{5}{4}-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Use the distributive property to multiply \frac{4}{5} by \frac{10}{3}x+\frac{5}{4}.
\frac{4\times 10}{5\times 3}x+\frac{4}{5}\times \frac{5}{4}-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Multiply \frac{4}{5} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{15}x+\frac{4}{5}\times \frac{5}{4}-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Do the multiplications in the fraction \frac{4\times 10}{5\times 3}.
\frac{8}{3}x+\frac{4}{5}\times \frac{5}{4}-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Reduce the fraction \frac{40}{15} to lowest terms by extracting and canceling out 5.
\frac{8}{3}x+1-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Cancel out \frac{4}{5} and its reciprocal \frac{5}{4}.
\frac{8}{3}x+\frac{2}{2}-\frac{3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Convert 1 to fraction \frac{2}{2}.
\frac{8}{3}x+\frac{2-3}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{3}x-\frac{1}{2}=-3\left(\frac{3}{2}-x\right)+\frac{20}{3}x
Subtract 3 from 2 to get -1.
\frac{8}{3}x-\frac{1}{2}=-3\times \frac{3}{2}+3x+\frac{20}{3}x
Use the distributive property to multiply -3 by \frac{3}{2}-x.
\frac{8}{3}x-\frac{1}{2}=\frac{-3\times 3}{2}+3x+\frac{20}{3}x
Express -3\times \frac{3}{2} as a single fraction.
\frac{8}{3}x-\frac{1}{2}=\frac{-9}{2}+3x+\frac{20}{3}x
Multiply -3 and 3 to get -9.
\frac{8}{3}x-\frac{1}{2}=-\frac{9}{2}+3x+\frac{20}{3}x
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{8}{3}x-\frac{1}{2}=-\frac{9}{2}+\frac{29}{3}x
Combine 3x and \frac{20}{3}x to get \frac{29}{3}x.
\frac{8}{3}x-\frac{1}{2}-\frac{29}{3}x=-\frac{9}{2}
Subtract \frac{29}{3}x from both sides.
-7x-\frac{1}{2}=-\frac{9}{2}
Combine \frac{8}{3}x and -\frac{29}{3}x to get -7x.
-7x=-\frac{9}{2}+\frac{1}{2}
Add \frac{1}{2} to both sides.
-7x=\frac{-9+1}{2}
Since -\frac{9}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-7x=\frac{-8}{2}
Add -9 and 1 to get -8.
-7x=-4
Divide -8 by 2 to get -4.
x=\frac{-4}{-7}
Divide both sides by -7.
x=\frac{4}{7}
Fraction \frac{-4}{-7} can be simplified to \frac{4}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}