Evaluate
\frac{1152}{35}\approx 32.914285714
Factor
\frac{2 ^ {7} \cdot 3 ^ {2}}{5 \cdot 7} = 32\frac{32}{35} = 32.91428571428571
Share
Copied to clipboard
\frac{4\times 12}{5\left(\frac{5}{8}-\frac{1}{3}\right)}
Divide \frac{4}{5} by \frac{\frac{5}{8}-\frac{1}{3}}{12} by multiplying \frac{4}{5} by the reciprocal of \frac{\frac{5}{8}-\frac{1}{3}}{12}.
\frac{48}{5\left(\frac{5}{8}-\frac{1}{3}\right)}
Multiply 4 and 12 to get 48.
\frac{48}{5\left(\frac{15}{24}-\frac{8}{24}\right)}
Least common multiple of 8 and 3 is 24. Convert \frac{5}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{48}{5\times \frac{15-8}{24}}
Since \frac{15}{24} and \frac{8}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{48}{5\times \frac{7}{24}}
Subtract 8 from 15 to get 7.
\frac{48}{\frac{5\times 7}{24}}
Express 5\times \frac{7}{24} as a single fraction.
\frac{48}{\frac{35}{24}}
Multiply 5 and 7 to get 35.
48\times \frac{24}{35}
Divide 48 by \frac{35}{24} by multiplying 48 by the reciprocal of \frac{35}{24}.
\frac{48\times 24}{35}
Express 48\times \frac{24}{35} as a single fraction.
\frac{1152}{35}
Multiply 48 and 24 to get 1152.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}