Solve for x
x=2
Graph
Share
Copied to clipboard
\frac{4}{5}\left(\frac{5}{4}\times \frac{2}{3}x+\frac{5}{4}\left(-\frac{1}{3}\right)-5\right)=-\frac{4}{3}x-\frac{1}{3}
Use the distributive property to multiply \frac{5}{4} by \frac{2}{3}x-\frac{1}{3}.
\frac{4}{5}\left(\frac{5\times 2}{4\times 3}x+\frac{5}{4}\left(-\frac{1}{3}\right)-5\right)=-\frac{4}{3}x-\frac{1}{3}
Multiply \frac{5}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}\left(\frac{10}{12}x+\frac{5}{4}\left(-\frac{1}{3}\right)-5\right)=-\frac{4}{3}x-\frac{1}{3}
Do the multiplications in the fraction \frac{5\times 2}{4\times 3}.
\frac{4}{5}\left(\frac{5}{6}x+\frac{5}{4}\left(-\frac{1}{3}\right)-5\right)=-\frac{4}{3}x-\frac{1}{3}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\frac{4}{5}\left(\frac{5}{6}x+\frac{5\left(-1\right)}{4\times 3}-5\right)=-\frac{4}{3}x-\frac{1}{3}
Multiply \frac{5}{4} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}\left(\frac{5}{6}x+\frac{-5}{12}-5\right)=-\frac{4}{3}x-\frac{1}{3}
Do the multiplications in the fraction \frac{5\left(-1\right)}{4\times 3}.
\frac{4}{5}\left(\frac{5}{6}x-\frac{5}{12}-5\right)=-\frac{4}{3}x-\frac{1}{3}
Fraction \frac{-5}{12} can be rewritten as -\frac{5}{12} by extracting the negative sign.
\frac{4}{5}\left(\frac{5}{6}x-\frac{5}{12}-\frac{60}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Convert 5 to fraction \frac{60}{12}.
\frac{4}{5}\left(\frac{5}{6}x+\frac{-5-60}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Since -\frac{5}{12} and \frac{60}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{5}\left(\frac{5}{6}x-\frac{65}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Subtract 60 from -5 to get -65.
\frac{4}{5}\times \frac{5}{6}x+\frac{4}{5}\left(-\frac{65}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Use the distributive property to multiply \frac{4}{5} by \frac{5}{6}x-\frac{65}{12}.
\frac{4\times 5}{5\times 6}x+\frac{4}{5}\left(-\frac{65}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Multiply \frac{4}{5} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{6}x+\frac{4}{5}\left(-\frac{65}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Cancel out 5 in both numerator and denominator.
\frac{2}{3}x+\frac{4}{5}\left(-\frac{65}{12}\right)=-\frac{4}{3}x-\frac{1}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{4\left(-65\right)}{5\times 12}=-\frac{4}{3}x-\frac{1}{3}
Multiply \frac{4}{5} times -\frac{65}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}x+\frac{-260}{60}=-\frac{4}{3}x-\frac{1}{3}
Do the multiplications in the fraction \frac{4\left(-65\right)}{5\times 12}.
\frac{2}{3}x-\frac{13}{3}=-\frac{4}{3}x-\frac{1}{3}
Reduce the fraction \frac{-260}{60} to lowest terms by extracting and canceling out 20.
\frac{2}{3}x-\frac{13}{3}+\frac{4}{3}x=-\frac{1}{3}
Add \frac{4}{3}x to both sides.
2x-\frac{13}{3}=-\frac{1}{3}
Combine \frac{2}{3}x and \frac{4}{3}x to get 2x.
2x=-\frac{1}{3}+\frac{13}{3}
Add \frac{13}{3} to both sides.
2x=\frac{-1+13}{3}
Since -\frac{1}{3} and \frac{13}{3} have the same denominator, add them by adding their numerators.
2x=\frac{12}{3}
Add -1 and 13 to get 12.
2x=4
Divide 12 by 3 to get 4.
x=\frac{4}{2}
Divide both sides by 2.
x=2
Divide 4 by 2 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}