Evaluate
-\frac{96}{1405}\approx -0.068327402
Factor
-\frac{96}{1405} = -0.06832740213523132
Share
Copied to clipboard
\frac{\frac{4}{5}}{\frac{15}{24}-\frac{8}{24}-12}
Least common multiple of 8 and 3 is 24. Convert \frac{5}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{\frac{4}{5}}{\frac{15-8}{24}-12}
Since \frac{15}{24} and \frac{8}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{5}}{\frac{7}{24}-12}
Subtract 8 from 15 to get 7.
\frac{\frac{4}{5}}{\frac{7}{24}-\frac{288}{24}}
Convert 12 to fraction \frac{288}{24}.
\frac{\frac{4}{5}}{\frac{7-288}{24}}
Since \frac{7}{24} and \frac{288}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{5}}{-\frac{281}{24}}
Subtract 288 from 7 to get -281.
\frac{4}{5}\left(-\frac{24}{281}\right)
Divide \frac{4}{5} by -\frac{281}{24} by multiplying \frac{4}{5} by the reciprocal of -\frac{281}{24}.
\frac{4\left(-24\right)}{5\times 281}
Multiply \frac{4}{5} times -\frac{24}{281} by multiplying numerator times numerator and denominator times denominator.
\frac{-96}{1405}
Do the multiplications in the fraction \frac{4\left(-24\right)}{5\times 281}.
-\frac{96}{1405}
Fraction \frac{-96}{1405} can be rewritten as -\frac{96}{1405} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}