Evaluate
\frac{\sqrt{1995}+4}{5}\approx 9.733084574
Factor
\frac{\sqrt{1995} + 4}{5} = 9.733084573650917
Share
Copied to clipboard
\frac{4}{5}+\sqrt{\frac{3}{5}+\frac{396}{5}}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
\frac{4}{5}+\sqrt{\frac{3+396}{5}}
Since \frac{3}{5} and \frac{396}{5} have the same denominator, add them by adding their numerators.
\frac{4}{5}+\sqrt{\frac{399}{5}}
Add 3 and 396 to get 399.
\frac{4}{5}+\frac{\sqrt{399}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{399}{5}} as the division of square roots \frac{\sqrt{399}}{\sqrt{5}}.
\frac{4}{5}+\frac{\sqrt{399}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{399}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{4}{5}+\frac{\sqrt{399}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{4}{5}+\frac{\sqrt{1995}}{5}
To multiply \sqrt{399} and \sqrt{5}, multiply the numbers under the square root.
\frac{4+\sqrt{1995}}{5}
Since \frac{4}{5} and \frac{\sqrt{1995}}{5} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}