Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(5-\sqrt{5}\right)}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}
Rationalize the denominator of \frac{4}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\frac{4\left(5-\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(5-\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
\frac{4\left(5-\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
\frac{1}{5}\left(5-\sqrt{5}\right)
Divide 4\left(5-\sqrt{5}\right) by 20 to get \frac{1}{5}\left(5-\sqrt{5}\right).
\frac{1}{5}\times 5+\frac{1}{5}\left(-1\right)\sqrt{5}
Use the distributive property to multiply \frac{1}{5} by 5-\sqrt{5}.
1+\frac{1}{5}\left(-1\right)\sqrt{5}
Cancel out 5 and 5.
1-\frac{1}{5}\sqrt{5}
Multiply \frac{1}{5} and -1 to get -\frac{1}{5}.