Solve for t
t=2
Share
Copied to clipboard
4=t\left(-t+4\right)
Variable t cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -t+4.
4=-t^{2}+4t
Use the distributive property to multiply t by -t+4.
-t^{2}+4t=4
Swap sides so that all variable terms are on the left hand side.
-t^{2}+4t-4=0
Subtract 4 from both sides.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 4.
t=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
Multiply 4 times -4.
t=\frac{-4±\sqrt{0}}{2\left(-1\right)}
Add 16 to -16.
t=-\frac{4}{2\left(-1\right)}
Take the square root of 0.
t=-\frac{4}{-2}
Multiply 2 times -1.
t=2
Divide -4 by -2.
4=t\left(-t+4\right)
Variable t cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -t+4.
4=-t^{2}+4t
Use the distributive property to multiply t by -t+4.
-t^{2}+4t=4
Swap sides so that all variable terms are on the left hand side.
\frac{-t^{2}+4t}{-1}=\frac{4}{-1}
Divide both sides by -1.
t^{2}+\frac{4}{-1}t=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-4t=\frac{4}{-1}
Divide 4 by -1.
t^{2}-4t=-4
Divide 4 by -1.
t^{2}-4t+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=-4+4
Square -2.
t^{2}-4t+4=0
Add -4 to 4.
\left(t-2\right)^{2}=0
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
t-2=0 t-2=0
Simplify.
t=2 t=2
Add 2 to both sides of the equation.
t=2
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}