Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(4+9i\right)}{\left(4-9i\right)\left(4+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+9i.
\frac{4\left(4+9i\right)}{4^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(4+9i\right)}{97}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 4+4\times \left(9i\right)}{97}
Multiply 4 times 4+9i.
\frac{16+36i}{97}
Do the multiplications in 4\times 4+4\times \left(9i\right).
\frac{16}{97}+\frac{36}{97}i
Divide 16+36i by 97 to get \frac{16}{97}+\frac{36}{97}i.
Re(\frac{4\left(4+9i\right)}{\left(4-9i\right)\left(4+9i\right)})
Multiply both numerator and denominator of \frac{4}{4-9i} by the complex conjugate of the denominator, 4+9i.
Re(\frac{4\left(4+9i\right)}{4^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4\left(4+9i\right)}{97})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 4+4\times \left(9i\right)}{97})
Multiply 4 times 4+9i.
Re(\frac{16+36i}{97})
Do the multiplications in 4\times 4+4\times \left(9i\right).
Re(\frac{16}{97}+\frac{36}{97}i)
Divide 16+36i by 97 to get \frac{16}{97}+\frac{36}{97}i.
\frac{16}{97}
The real part of \frac{16}{97}+\frac{36}{97}i is \frac{16}{97}.