Solve for x
x=-\frac{6}{41}\approx -0.146341463
Graph
Share
Copied to clipboard
\left(5x-2\right)\times 4=\left(-2-3x\right)\times 7
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-2\right)\left(3x+2\right), the least common multiple of 3x+2,2-5x.
20x-8=\left(-2-3x\right)\times 7
Use the distributive property to multiply 5x-2 by 4.
20x-8=-14-21x
Use the distributive property to multiply -2-3x by 7.
20x-8+21x=-14
Add 21x to both sides.
41x-8=-14
Combine 20x and 21x to get 41x.
41x=-14+8
Add 8 to both sides.
41x=-6
Add -14 and 8 to get -6.
x=\frac{-6}{41}
Divide both sides by 41.
x=-\frac{6}{41}
Fraction \frac{-6}{41} can be rewritten as -\frac{6}{41} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}