Evaluate
\frac{4x^{4}+42x^{3}+36x^{2}+75x+54}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Expand
\frac{4x^{4}+42x^{3}+36x^{2}+75x+54}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Graph
Share
Copied to clipboard
\frac{4\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and x^{2}+1 is \left(3x+2\right)\left(x^{2}+1\right). Multiply \frac{4}{3x+2} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{14}{x^{2}+1} times \frac{3x+2}{3x+2}.
\frac{4\left(x^{2}+1\right)+14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Since \frac{4\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)} and \frac{14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+4+42x+28}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Do the multiplications in 4\left(x^{2}+1\right)+14\left(3x+2\right).
\frac{4x^{2}+32+42x}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Combine like terms in 4x^{2}+4+42x+28.
\frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}+\frac{11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x+2\right)\left(x^{2}+1\right) and \left(x^{2}+1\right)^{2} is \left(3x+2\right)\left(x^{2}+1\right)^{2}. Multiply \frac{4x^{2}+32+42x}{\left(3x+2\right)\left(x^{2}+1\right)} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{11}{\left(x^{2}+1\right)^{2}} times \frac{3x+2}{3x+2}.
\frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)+11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Since \frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}} and \frac{11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{4}+4x^{2}+32x^{2}+32+42x^{3}+42x+33x+22}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Do the multiplications in \left(4x^{2}+32+42x\right)\left(x^{2}+1\right)+11\left(3x+2\right).
\frac{4x^{4}+36x^{2}+54+42x^{3}+75x}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Combine like terms in 4x^{4}+4x^{2}+32x^{2}+32+42x^{3}+42x+33x+22.
\frac{4x^{4}+36x^{2}+54+42x^{3}+75x}{3x^{5}+2x^{4}+6x^{3}+4x^{2}+3x+2}
Expand \left(3x+2\right)\left(x^{2}+1\right)^{2}.
\frac{4\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and x^{2}+1 is \left(3x+2\right)\left(x^{2}+1\right). Multiply \frac{4}{3x+2} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{14}{x^{2}+1} times \frac{3x+2}{3x+2}.
\frac{4\left(x^{2}+1\right)+14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Since \frac{4\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)} and \frac{14\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+4+42x+28}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Do the multiplications in 4\left(x^{2}+1\right)+14\left(3x+2\right).
\frac{4x^{2}+32+42x}{\left(3x+2\right)\left(x^{2}+1\right)}+\frac{11}{\left(x^{2}+1\right)^{2}}
Combine like terms in 4x^{2}+4+42x+28.
\frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}+\frac{11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x+2\right)\left(x^{2}+1\right) and \left(x^{2}+1\right)^{2} is \left(3x+2\right)\left(x^{2}+1\right)^{2}. Multiply \frac{4x^{2}+32+42x}{\left(3x+2\right)\left(x^{2}+1\right)} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{11}{\left(x^{2}+1\right)^{2}} times \frac{3x+2}{3x+2}.
\frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)+11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Since \frac{\left(4x^{2}+32+42x\right)\left(x^{2}+1\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}} and \frac{11\left(3x+2\right)}{\left(3x+2\right)\left(x^{2}+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{4}+4x^{2}+32x^{2}+32+42x^{3}+42x+33x+22}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Do the multiplications in \left(4x^{2}+32+42x\right)\left(x^{2}+1\right)+11\left(3x+2\right).
\frac{4x^{4}+36x^{2}+54+42x^{3}+75x}{\left(3x+2\right)\left(x^{2}+1\right)^{2}}
Combine like terms in 4x^{4}+4x^{2}+32x^{2}+32+42x^{3}+42x+33x+22.
\frac{4x^{4}+36x^{2}+54+42x^{3}+75x}{3x^{5}+2x^{4}+6x^{3}+4x^{2}+3x+2}
Expand \left(3x+2\right)\left(x^{2}+1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}