Solve for w
w=\frac{11}{25}=0.44
Share
Copied to clipboard
\frac{4}{3}w-\frac{2}{3}-3w=-\frac{7}{5}
Subtract 3w from both sides.
-\frac{5}{3}w-\frac{2}{3}=-\frac{7}{5}
Combine \frac{4}{3}w and -3w to get -\frac{5}{3}w.
-\frac{5}{3}w=-\frac{7}{5}+\frac{2}{3}
Add \frac{2}{3} to both sides.
-\frac{5}{3}w=-\frac{21}{15}+\frac{10}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{7}{5} and \frac{2}{3} to fractions with denominator 15.
-\frac{5}{3}w=\frac{-21+10}{15}
Since -\frac{21}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
-\frac{5}{3}w=-\frac{11}{15}
Add -21 and 10 to get -11.
w=-\frac{11}{15}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}.
w=\frac{-11\left(-3\right)}{15\times 5}
Multiply -\frac{11}{15} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
w=\frac{33}{75}
Do the multiplications in the fraction \frac{-11\left(-3\right)}{15\times 5}.
w=\frac{11}{25}
Reduce the fraction \frac{33}{75} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}