\frac { 4 } { 3 } - 10 x + 4 - [ \frac { 2 } { 3 } ( x - 4 ) + 2 x + \frac { 1 } { 3 } ] = - 5 x + \frac { 2 } { 3 } ( x - 1
Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{4}{3}-10x+\frac{12}{3}-\left(\frac{2}{3}\left(x-4\right)+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Convert 4 to fraction \frac{12}{3}.
\frac{4+12}{3}-10x-\left(\frac{2}{3}\left(x-4\right)+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Since \frac{4}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
\frac{16}{3}-10x-\left(\frac{2}{3}\left(x-4\right)+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Add 4 and 12 to get 16.
\frac{16}{3}-10x-\left(\frac{2}{3}x+\frac{2}{3}\left(-4\right)+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Use the distributive property to multiply \frac{2}{3} by x-4.
\frac{16}{3}-10x-\left(\frac{2}{3}x+\frac{2\left(-4\right)}{3}+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Express \frac{2}{3}\left(-4\right) as a single fraction.
\frac{16}{3}-10x-\left(\frac{2}{3}x+\frac{-8}{3}+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Multiply 2 and -4 to get -8.
\frac{16}{3}-10x-\left(\frac{2}{3}x-\frac{8}{3}+2x+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{16}{3}-10x-\left(\frac{8}{3}x-\frac{8}{3}+\frac{1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Combine \frac{2}{3}x and 2x to get \frac{8}{3}x.
\frac{16}{3}-10x-\left(\frac{8}{3}x+\frac{-8+1}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Since -\frac{8}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{16}{3}-10x-\left(\frac{8}{3}x-\frac{7}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
Add -8 and 1 to get -7.
\frac{16}{3}-10x-\frac{8}{3}x-\left(-\frac{7}{3}\right)=-5x+\frac{2}{3}\left(x-1\right)
To find the opposite of \frac{8}{3}x-\frac{7}{3}, find the opposite of each term.
\frac{16}{3}-10x-\frac{8}{3}x+\frac{7}{3}=-5x+\frac{2}{3}\left(x-1\right)
The opposite of -\frac{7}{3} is \frac{7}{3}.
\frac{16}{3}-\frac{38}{3}x+\frac{7}{3}=-5x+\frac{2}{3}\left(x-1\right)
Combine -10x and -\frac{8}{3}x to get -\frac{38}{3}x.
\frac{16+7}{3}-\frac{38}{3}x=-5x+\frac{2}{3}\left(x-1\right)
Since \frac{16}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{23}{3}-\frac{38}{3}x=-5x+\frac{2}{3}\left(x-1\right)
Add 16 and 7 to get 23.
\frac{23}{3}-\frac{38}{3}x=-5x+\frac{2}{3}x+\frac{2}{3}\left(-1\right)
Use the distributive property to multiply \frac{2}{3} by x-1.
\frac{23}{3}-\frac{38}{3}x=-5x+\frac{2}{3}x-\frac{2}{3}
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{23}{3}-\frac{38}{3}x=-\frac{13}{3}x-\frac{2}{3}
Combine -5x and \frac{2}{3}x to get -\frac{13}{3}x.
\frac{23}{3}-\frac{38}{3}x+\frac{13}{3}x=-\frac{2}{3}
Add \frac{13}{3}x to both sides.
\frac{23}{3}-\frac{25}{3}x=-\frac{2}{3}
Combine -\frac{38}{3}x and \frac{13}{3}x to get -\frac{25}{3}x.
-\frac{25}{3}x=-\frac{2}{3}-\frac{23}{3}
Subtract \frac{23}{3} from both sides.
-\frac{25}{3}x=\frac{-2-23}{3}
Since -\frac{2}{3} and \frac{23}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{3}x=-\frac{25}{3}
Subtract 23 from -2 to get -25.
x=-\frac{25}{3}\left(-\frac{3}{25}\right)
Multiply both sides by -\frac{3}{25}, the reciprocal of -\frac{25}{3}.
x=\frac{-25\left(-3\right)}{3\times 25}
Multiply -\frac{25}{3} times -\frac{3}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{75}{75}
Do the multiplications in the fraction \frac{-25\left(-3\right)}{3\times 25}.
x=1
Divide 75 by 75 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}